×

Stability of generalized polytropic models. (English) Zbl 1431.83031

MSC:

83C22 Einstein-Maxwell equations
83C15 Exact solutions to problems in general relativity and gravitational theory
85A15 Galactic and stellar structure
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
76E20 Stability and instability of geophysical and astrophysical flows
83C75 Space-time singularities, cosmic censorship, etc.
76Y05 Quantum hydrodynamics and relativistic hydrodynamics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Kausar, H. R.; Noureen, I., Dissipative spherical collapse of charged anisotropic fluid in \(f(R)\) gravity, Eur. Phys. J. C, 74, 2760, (2014)
[2] Joshi, P. S.; Malafarina, D., Recent developments in gravitational collapse and spacetime singularities, Int. J. Mod. Phys. D, 20, 14, 2641, (2011) · Zbl 1263.83011
[3] Bondi, H., Massive spheres in general relativity, Proc. R. Soc. Lond. A, 282, 1390, 303-317, (1964) · Zbl 0125.21003
[4] Chandrasekhar, S., Dynamical instability of Gaseous masses approaching the Schwarzchild limit in general relativity, Phys. Rev. Lett., 12, 114, (1964) · Zbl 0116.21704
[5] Herrera, L., Cracking of self gravitating compact objects, Phys. Lett. A, 165, 3, 206-210, (1992)
[6] Herrera, L.; Santos, N. O., Local anisotropy in self gravitating systems, Phys. Rep., 286, 2, 53-130, (1997)
[7] Herrera, L.; Varela, V., Transverse cracking of self-gravitating bodies induced by axially symmetric perturbations, Phys. Lett. A, 226, 3-4, 143-149, (1997) · Zbl 0962.83508
[8] Prisco, A. D.; Fuenmayor, E.; Herrera, L.; Varela, V., Tidal forces and fragmentation of self-gravitating compact objects, Phys. Lett. A, 195, 1, 23-26, (1994) · Zbl 0941.83506
[9] Prisco, A. D.; Herrera, L.; Varela, V., Cracking of homogeneous self-gravitating compact objects induced by fluctuations of local anisotropy, Gen. Relativ. Grav., 29, 10, 1239-1256, (1997) · Zbl 0902.76101
[10] Abreu, H.; Hernandez, H.; Nunez, L. A., Sound speeds, cracking and the stability of self-gravitating anisotropic compact objects, Class. Quantum Gravity, 24, 18, 4631-4645, (2007) · Zbl 1128.83023
[11] G. A. Gonzalez, A. Navarro and L. A. Nunez, Cracking and instability of isotropic and anisotropic relativistic spheres, http://arxiv.org/abs/1410.7733.
[12] Gonzalez, G. A.; Navarro, A.; Nunez, L. A., Cracking of anisotropic spheres in general relativity revisited, J. Phys. Conf. Ser., 600, 012014, (2015)
[13] Bonnor, W. B., The mass of a static charged sphere, Z. Phys., 160, 1, 59-65, (1960) · Zbl 0093.43502
[14] Bonnor, W. B., The equlilbrium of a charged sphere, Mon. Not. Roy. Astron. Soc., 129, 6, 443-446, (1964)
[15] Bekenstein, J. D., Hydrostatic equilibrium and gravitational collapse of relativistic charged fluid balss, Phys. Rev. D, 4, 2185, (1971)
[16] Ray, S.; Malheiro, M.; Lemos, J. P. S.; Zanchin, V. T., Charged polytropic compact stars, Braz. J. Phys., 34, 4, 310-314, (2004)
[17] Sharif, M.; Abbas, G., Singularities of noncompact charged objects, Chin. Phys. B, 22, 3, 030401, (2013)
[18] Sharif, M.; Azam, M., Role of anisotropy in the expansion-free plane gravitational collapse, Gen. Relativ. Grav., 46, 1647, (2014) · Zbl 1286.83071
[19] Sharif, M.; Azam, M., The stability of a shearing viscous star with an electomagnetic field, Chin. Phys. B, 22, 5, 050401, (2013)
[20] Sharif, M.; Azam, M., Mechanical stability of cylindrical thin-shell wormholes, Eur. Phys. J. C, 73, 2407, (2013)
[21] Azam, M.; Mardan, S. A.; Rehman, M. A., Cracking of some compact objects with linear regime, Astrophys. Space Sci., 358, 6, (2015)
[22] Azam, M.; Mardan, S. A.; Rehman, M. A., Cracking of some compact objects with electromagnetic field, Astrophys. Space Sci., 359, 14, (2015)
[23] Nasim, A.; Azam, M., Anisotropic charged physical models with generalized polytropic equation of state, Eur. Phys. J. C, 78, 1, (2018)
[24] Hansraj, S.; Maharaj, S. D.; Mthethwa, T., Incompressible Einstein-Maxwell fluids with specified electric fields, Parmana, 81, 4, 557-567, (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.