×

Distributed prescribed performance pinning synchronization for complex dynamical networks with event-triggered communication protocols. (English) Zbl 1430.93113

Summary: This paper proposes a distributed synchronization strategy of complex dynamical networks with prescribed performance under pinning control, via event-triggered communication protocols. Besides guaranteeing the transient performance of synchronization process, the provided pinning control can ensure the synchronization errors converge to the origin. Moreover, a sufficient condition of the synchronization is also given on the basis of the Lyapunov stability theory. The novelties of this paper are that not only transient performance of synchronization for complex dynamical networks is guaranteed, but also continuous communication among network nodes can be avoided under event-triggered pinning control, which can decrease the number of both controlled nodes and information updates. What is more, the Zeno behavior is eliminated in communication process of the networks. At last, the validity and the effectiveness of the theoretic results obtained are verified by means of the application in the complex dynamical network with Chua’s circuit.

MSC:

93C40 Adaptive control/observation systems
93C65 Discrete event control/observation systems
93B70 Networked control
93A15 Large-scale systems
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Tan, L.; Zhu, Z.; Ge, F., Utility maximization resource allocation in wireless networks: methods and algorithms, IEEE Trans. Syst. Man Cybern.: Syst., 45, 7, 1018-1034 (2015)
[2] Kim, H.; Lee, H.; Ahn, M., Joint subcarrier and power allocation methods in full duplex wireless powered communication networks for OFDM systems, IEEE Trans. Wirel. Commun., 15, 7, 4745-4753 (2016)
[3] Green, S.; Serban, M.; Scholl, R., Network analyses in systems biology: new strategies for dealing with biological complexity, Synthese, 195, 4, 1751-1777 (2018)
[4] Lu, R.; Yu, W.; Lü, J., Synchronization on complex networks of networks, IEEE Trans. Neural Netw. Learn. Syst., 25, 11, 2110-2118 (2014)
[5] Chen, J.; Li, J.; Yuan, X., Global fuzzy adaptive consensus control of unknown nonlinear multi-agent systems, IEEE Trans. Fuzzy Syst. (2019)
[6] Wang, J. L.; Wu, H. N.; Huang, T., Passivity of directed and undirected complex dynamical networks with adaptive coupling weights, IEEE Trans. Neural Netw. Learn. Syst., 28, 8, 1827-1839 (2017)
[7] Acebrn, J. A.; Bonilla, L. L.; Vicente, C. J.P., The kuramoto model: a simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77, 1, 137 (2005)
[8] Yang, X.; Ho, D. W.C.; Lu, J., Finite-time cluster synchronization of T-S fuzzy complex networks with discontinuous subsystems and random coupling delays, IEEE Trans. Fuzzy Syst., 23, 6, 2302-2316 (2015)
[9] Yang, X.; Yang, Z., Synchronization of t-s fuzzy complex dynamical networks with time-varying impulsive delays and stochastic effects, Fuzzy Sets Syst., 235, 25-43 (2014) · Zbl 1315.93055
[10] Yu, W.; Chen, G.; Lü, J., On pinning synchronization of complex dynamical networks, Automatica, 45, 2, 429-435 (2009) · Zbl 1158.93308
[11] Huang, C.; Ho, D. W.C.; Lu, J., Pinning synchronization in T-S fuzzy complex networks with partial and discrete-time couplings, IEEE Trans. Fuzzy Syst., 23, 4, 1274-1285 (2015)
[12] Liu, X.; Chen, T., Synchronization of complex networks via aperiodically intermittent pinning control, IEEE Trans. Autom. Control, 60, 12, 3316-3321 (2015) · Zbl 1360.93359
[13] Zhou, J.; Lu, J.; Lü, J., Pinning adaptive synchronization of a general complex dynamical network, Automatica, 44, 4, 996-1003 (2008) · Zbl 1283.93032
[14] Su, H.; Rong, Z.; Chen, M. Z.Q., Decentralized adaptive pinning control for cluster synchronization of complex dynamical networks, IEEE Trans. Cybern., 43, 1, 394-399 (2013)
[15] Jin, X. Z.; Yang, G. H., Adaptive pinning synchronization of a class of nonlinearly coupled complex networks, Commun. Nonlinear Sci. Numer. Simul., 18, 2, 316-326 (2013) · Zbl 1253.93065
[16] Wen, G.; Yu, W.; Chen, M. Z.Q., h_∞ pinning synchronization of directed networks with aperiodic sampled-data communications, IEEE Trans. Circuits Syst. I: Regul. Pap., 61, 11, 3245-3255 (2014)
[17] Xu, Z.; Shi, P.; Su, H., Globalh_∞ pinning synchronization of complex networks with sampled-data communications, IEEE Trans. Neural Netw. Learn. Syst., 29, 5, 1467-1476 (2018)
[18] Li, H.; Liao, X.; Chen, G., Event-triggered asynchronous intermittent communication strategy for synchronization in complex dynamical networks, Neural Netw., 66, 1-10 (2015) · Zbl 1396.93091
[19] Zou, L.; Wang, Z.; Gao, H., Event-triggered state estimation for complex networks with mixed time delays via sampled data information: The continuous-time case, IEEE Trans. Cybern., 45, 12, 2804-2815 (2015)
[20] Wang, L.; Wang, Z.; Huang, T., An event-triggered approach to state estimation for a class of complex networks with mixed time delays and nonlinearities, IEEE Trans. Cybern., 46, 11, 2497-2508 (2016)
[21] Deng, C.; Er, M. J.; Yang, G. H., Event-triggered consensus of linear multiagent systems with time-varying communication delays, IEEE Trans. Cybern. (2019)
[22] Deng, C.; Yang, G. H., Leaderless and leader-following consensus of linear multi-agent systems with distributed event-triggered estimators, J. Frankl. Inst., 356, 1, 309-333 (2019) · Zbl 1405.93009
[23] Ye, D.; Chen, M. M.; Yang, H. J., Distributed adaptive event-triggered fault-tolerant consensus of multiagent systems with general linear dynamics, IEEE Trans. Cybern., 49, 3, 757-767 (2019)
[24] Gao, L.; Liao, X.; Li, H., Pinning controllability analysis of complex networks with a distributed event-triggered mechanism[j], IEEE Trans. Circuits Syst. II: Express Briefs, 61, 7, 541-545 (2014)
[25] Liu, Q.; Qin, J.; Yu, C., Event-based agreement protocols for complex networks with time delays under pinning control, J. Frankl. Inst., 353, 15, 3999-4015 (2016) · Zbl 1347.93174
[26] Zhou, B.; Liao, X.; Huang, T., Pinning exponential synchronization of complex networks via event-triggered communication with combinational measurements, Neurocomputing, 157, 199-207 (2015)
[27] Miller, D. E.; Davison, E. J., An adaptive controller which provides an arbitrarily good transient and steady-state response, IEEE Trans. Autom. Control, 36, 1, 68-81 (1991) · Zbl 0725.93074
[28] Zhou, J.; Wen, C.; Zhang, Y., Adaptive backstepping control of a class of uncertain nonlinear systems with unknown backlash-like hysteresis, IEEE Trans. Autom. Control, 49, 10, 1751-1759 (2004) · Zbl 1365.93251
[29] KrstiC, M.; Kanellakopoulos, I.; KokotoviC, P. V., Nonlinear design of adaptive controllers for linear systems, IEEE Trans. Autom. Control, 39, 4, 738-752 (1994) · Zbl 0807.93036
[30] Yan, L.; Hsu, L.; Xiuxia, S., A variable structure MRAC with expected transient and steady-state performance, Automatica, 42, 5, 805-813 (2006) · Zbl 1137.93015
[31] Bechlioulis, C. P.; Rovithakis, G. A., Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance[j], IEEE Trans. Autom. Control, 53, 9, 2090-2099 (2008) · Zbl 1367.93298
[32] Kostarigka, A. K.; Rovithakis, G. A., Adaptive dynamic output feedback neural network control of uncertain MIMO nonlinear systems with prescribed performance, IEEE Trans. Neural Netw. Learn. Syst., 23, 1, 138-149 (2012)
[33] Na, J., Adaptive prescribed performance control of nonlinear systems with unknown dead zone, Int. J. Adapt. Control Signal Process., 27, 5, 426-446 (2013) · Zbl 1283.93153
[34] Wang, W.; Wen, C., Adaptive actuator failure compensation control of uncertain nonlinear systems with guaranteed transient performance, Automatica, 46, 12, 2082-2091 (2010) · Zbl 1205.93083
[35] Bechlioulis, C. P.; Rovithakis, G. A., Prescribed performance adaptive control for multi-input multi-output affine in the control nonlinear systems, IEEE Trans. Autom. Control, 55, 5, 1220-1226 (2010) · Zbl 1368.93288
[36] Zhang, L.; Hua, C.; Guan, X., Distributed output feedback consensus tracking prescribed performance control for a class of non-linear multi-agent systems with unknown disturbances, IET Control Theory Appl., 10, 8, 877-883 (2016)
[37] Fan, A.; Li, J., Adaptive neural network prescribed performance matrix projection synchronization for unknown complex dynamical networks with different dimensions, Neurocomputing, 281, 55-66 (2018)
[38] Wu, X.; Lu, H., Generalized projective synchronization between two different general complex dynamical networks with delayed coupling, Phys. Lett. A, 374, 38, 3932-3941 (2010) · Zbl 1237.05196
[39] Ortega, J. M., Matrix Theory: A Second Course (2013), Springer Science & Business Media
[40] Rodrigues A, M.; Odloak, D., MPC for stable linear systems with model uncertainty, Automatica, 39, 4, 569-583 (2003) · Zbl 1019.93018
[41] Bechlioulis, C. P.; Rovithakis, G. A., Adaptive control with guaranteed transient and steady state tracking error bounds for strict feedback systems, Automatica, 45, 2, 532-538 (2009) · Zbl 1158.93325
[42] Yoo, S. J., Fault-tolerant control of strict-feedback non-linear time-delay systems with prescribed performance, IET Control Theory Appl., 7, 11, 1553-1561 (2013)
[43] Heemels, W.; Donkers, M. C.F., Model-based periodic event-triggered control for linear systems, Automatica, 49, 3, 698-711 (2013) · Zbl 1267.93102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.