zbMATH — the first resource for mathematics

Geometrothermodynamics as a singular conformal thermodynamic geometry. (English) Zbl 1430.83092
Summary: In this letter, we first redefine our formalism of the thermodynamic geometry introduced in [the first and the last authors, “Correspondence of phase transition points and singularities of thermodynamic geometry of black holes”, Eur. Phys. J. C 74, No. 1, Paper No. 2681, 10 p. (2014; doi:10.1140/epjc/s10052-013-2681-6); the first author et al., “Hessian matrix, specific heats, Nambu brackets, and thermodynamic geometry”, J. High Energy Phys. 2015, No. 4, Paper No. 115, 24 p. (2015; doi:10.1007/jhep04(2015)115)] by changing coordinates of the thermodynamic space by means of Jacobian matrices. We then show that the geometrothermodynamics (GTD) is conformally related to this new formalism of the thermodynamic geometry. This conformal transformation is singular at unphysical points were generated in GTD metric. Therefore, working with our metric neatly excludes all unphysical points without imposing any constraints.
83E05 Geometrodynamics and the holographic principle
Full Text: DOI
[1] Hosseini Mansoori, S. A.; Mirza, Behrouz, Correspondence of phase transition points and singularities of thermodynamic geometry of black holes, Eur. Phys. J. C, 74, 2681 (2014)
[2] Hosseini Mansoori, S. A.; Mirza, Behrouz; Fazel, Mohamadreza, Hessian matrix, specific heats, Nambu brackets, and thermodynamic geometry, J. High Energy Phys., 04, Article 115 pp. (2015)
[3] Hawking, S. W., Gravitational radiation from colliding black holes, Phys. Rev. Lett., 26, 1344 (1971)
[4] Bekenstein, J. D., Extraction of energy and charge from a black hole, Phys. Rev. D, 7, 949 (1973)
[5] Bardeen, J. M.; Carter, B.; Hawking, S. W., The four laws of black hole mechanics, Commun. Math. Phys., 31, 161 (1973) · Zbl 1125.83309
[6] Shen, J.; Cai, R.; Wang, B.; Su, R., Thermodynamic geometry and critical behavior of black holes, Int. J. Mod. Phys. A, 22 (2007) · Zbl 1203.83032
[7] Aman, J.; Pidokrajt, N., Geometry of higher-dimensional black hole thermodynamics, Phys. Rev. D, 73, Article 024017 pp. (2006)
[8] Weinhold, F., Metric geometry of equilibrium thermodynamics, J. Chem. Phys., 63, 2479 (1975)
[9] Ruppeiner, G., Thermodynamics: a Riemannian geometric model, Phys. Rev. A, 20, 1608 (1979)
[10] Aman, J.; Bengtsson, I.; Pidokrajt, N., Geometry of black hole thermodynamics, Gen. Relativ. Gravit., 35, 1733 (2003) · Zbl 1034.83011
[11] Sarkar, T.; Sengupta, G.; Tiwari, B. N., On the thermodynamic geometry of BTZ black holes, J. High Energy Phys., 0611, Article 015 pp. (2006)
[12] Quevedo, H., Geometrothermodynamics of black holes, Gen. Relativ. Gravit., 40, 40, 971 (2008) · Zbl 1140.83398
[13] Jardim, D. F.; Rodrigues, M. E.; Houndjo, S. J.M., Thermodynamics of the phantom Reissner-Nordstrom-AdS black hole, Eur. Phys. J. Plus, 27 (2012)
[14] Rodrigues, M. E.; Oporto, Z. A.A., Thermodynamics of phantom black holes in Einstein-Maxwell-dilaton theory, Phys. Rev. D, 85, Article 104022 pp. (2012)
[15] Quevedo, H.; Quevedo, M. N.; Sanchez, A., Geometrothermodynamics of phantom AdS black holes, Eur. Phys. J. C, 76, 110 (2016)
[16] Azreg-Ainou, M., Geometrothermodynamics: comments, critics, and supports, Eur. Phys. J. C, 74, 2930 (2014)
[17] Quevedo, H.; Quevedo, M. N.; Sánchez, A., Einstein-Maxwell-dilaton phantom black holes: thermodynamics and geometrothermodynamics, Phys. Rev. D, 94, 2, Article 024057 pp. (2016)
[18] Callen, H. B., Thermodynamics (1981), John Wiley and Sons, Inc.: John Wiley and Sons, Inc. New York
[19] Quevedo, H.; Sanchez, A.; Taj, S.; Vazquez, A., Phase transitions in geometrothermodynamics, Gen. Relativ. Gravit., 43 (2011) · Zbl 1213.83129
[20] Quevedo, H.; Sanchez, A., Geometrothermodynamics of asymptotically de Sitter black holes, J. High Energy Phys., 09, Article 034 pp. (2008) · Zbl 1245.83037
[21] Quevedo, H., Black hole geometrothermodynamics, J. Phys. Conf. Ser., 831, 1, Article 012005 pp. (2017)
[22] Mansoori, S. A.H.; Mirza, B.; Sharifian, E., Extrinsic and intrinsic curvatures in thermodynamic geometry, Phys. Lett. B, 759, 298 (2016) · Zbl 1367.83052
[23] Azreg-Aïnou, M.; Rodrigues, M. E., Thermodynamical, geometrical and Poincare methods for charged black holes in presence of quintessence, J. High Energy Phys., 09, Article 146 pp. (2013)
[24] Sekiwa, Y., Thermodynamics of de Sitter black holes: thermal cosmological constant, Phys. Rev. D, 73, Article 084009 pp. (2006)
[25] Azreg-Aïnou, M., The conformal metric structure of geometrothermodynamics, J. Math. Phys., 55, Article 033505 pp. (2014) · Zbl 1288.80004
[26] Carroll, S. M., Spacetime and Geometry: An Introduction to General Relativity (2004), Addison-Wesley: Addison-Wesley San Francisco, USA · Zbl 1131.83001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.