×

Effect of wing mass on the free flight of a butterfly-like model using immersed boundary-lattice Boltzmann simulations. (English) Zbl 1430.76338

Summary: The wings of butterflies are relatively heavier than those of other insects, and the inertial force and torque due to the wing mass are likely to have a significant effect on agility and manoeuvrability in the flapping flight of butterflies. In the present study, the effect of wing mass on the free flight of butterflies is investigated by numerical simulations based on an immersed boundary-lattice Boltzmann method. We use a butterfly-like model consisting of two square wings with mass connected by a rod-shaped body. We simulate the free flights of the model by changing the ratio of the wing mass to the total mass of the model and also changing the mass distributions of the wings. As a result, we find that the aerodynamic vertical and horizontal forces decrease as the wing-mass ratio increases, since for a large wing-mass ratio the body has large vertical and horizontal oscillations in each stroke and consequently the speeds of the wing tip and the leading edge relatively decrease. In addition, we find that the wing-mass ratio has a dominant effect on the rotational motion of the model, and a large wing-mass ratio reduces aerodynamic force and intensifies the time variation of the pitching angle. From the results of our free flight simulations, we clarify the critical wing-mass ratio between upward flight and downward flight and find that the critical wing-mass ratio is a function of the non-dimensional total mass and almost independent of the wing length. Then, we evaluate the effect of the wing-mass distribution on the critical wing-mass ratio. Finally, we discuss the limitations of the model.

MSC:

76G25 General aerodynamics and subsonic flows
76M28 Particle methods and lattice-gas methods

Software:

FluSI
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aono, H., Liang, F. & Liu, H.2008Near- and far-field aerodynamics in insect hovering flight: an integrated computational study. J. Expl Biol.211, 239-257.10.1242/jeb.008649
[2] Betts, C. R. & Wootton, R. J.1988Wing shape and flight behaviour in butterflies (Lepidoptera: Papilionoidea and Hesperioidea): a preliminary analysis. J. Expl Biol.138, 271-288.
[3] Combes, S. A. & Daniel, T. L.2003Into thin air: contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca sexta. J. Expl Biol.206, 2999-3006.10.1242/jeb.00502
[4] Daniel, T. L. & Combes, S. A.2002Flexible wings and fins: bending by inertial or fluid-dynamic forces?Integr. Comp. Biol.42, 1044-1049.10.1093/icb/42.5.1044
[5] Dudley, R.1990Biomechanics of flight in neotropical butterflies: morphometrics and kinematics. J. Expl Biol.150, 37-53.
[6] Dudley, R.2002The Biomechanics of Insect Flight: Form, Function, Evolution. Princeton University Press.
[7] Ellington, C. P.1999The novel aerodynamics of insect flight: applications to micro-air vehicles. J. Expl Biol.202, 3439-3448.
[8] Engels, T., Kolomenskiy, D., Schneider, K. & Sesterhenn, J.2016FluSI: a novel parallel simulation tool for flapping insect flight using a Fourier method with volume penalization. SIAM J. Sci. Comput.38, S3-S24.10.1137/15M1026006 · Zbl 1348.76106
[9] Fei, Y.-H. J. & Yang, J. T.2015Enhanced thrust and speed revealed in the forward flight of a butterfly with transient body translation. Phys. Rev. E92, 033004.
[10] Fei, Y.-H. J. & Yang, J. T.2016Importance of body rotation during the flight of a butterfly. Phys. Rev. E93, 033124.
[11] Fuchiwaki, M. & Tanaka, K.2016Three-dimensional vortex structure in a wake of a free-flight butterfly. Trans. JSME82 (833), 15-00425 (in Japanese).
[12] Gao, N., Aono, H. & Liu, H.2011Perturbation analysis of 6DoF flight dynamics and passive dynamic stability of hovering fruit fly Drosophila melanogaster. J. Theor. Biol.270, 98-111.10.1016/j.jtbi.2010.11.022 · Zbl 1331.92160
[13] Hino, H. & Inamuro, T.2018Turning flight simulations of a dragonfly-like flapping wing – body model by the immersed boundary – lattice Boltzmann method. Fluid Dyn. Res.50, 065501.
[14] Hunt, J. C. R., Wray, A. A. & Moin, P.1988Eddies, streams, and convergence zones in turbulent flows. In Proceedings of the Summer Program 1988, pp. 193-208. NASA.
[15] Inamuro, T.2012Lattice Boltzmann methods for moving boundary flows. Fluid Dyn. Res.44, 024001. · Zbl 1319.76039
[16] Jones, S. K., Laurenza, R., Hedrick, T. L., Griffith, B. E. & Miller, L. A.2015Lift vs. drag based mechanisms for vertical force production in the smallest flying insects. J. Theor. Biol.384, 105-120.10.1016/j.jtbi.2015.07.035 · Zbl 1343.92050
[17] Kang, C.-K., Cranford, J., Sridhar, M. K., Kodali, D., Landrum, D. B. & Slegers, N.2018Experimental characterization of a butterfly in climbing flight. AIAA J.56, 15-24.10.2514/1.J055360
[18] Lin, T., Zheng, L., Hedrick, T. & Mittal, R.2012The significance of moment-of-inertia variation in flight manoeuvres of butterflies. Bioinspir. Biomim.7, 044002.10.1088/1748-3182/7/4/044002
[19] Liu, G., Dong, H. & Li, C.2016Vortex dynamics and new lift enhancement mechanism of wing – body interaction in insect forward flight. J. Fluid Mech.795, 634-651.10.1017/jfm.2016.175 · Zbl 1359.76360
[20] Liu, H.2009Integrated modeling of insect flight: from morphology, kinematics to aerodynamics. J. Comput. Phys.228, 439-459.10.1016/j.jcp.2008.09.020 · Zbl 1409.76154
[21] Mittal, R. & Iaccarino, G.2005Immersed boundary methods. Annu. Rev. Fluid Mech.37, 239-261.10.1146/annurev.fluid.37.061903.175743 · Zbl 1117.76049
[22] Nakatani, Y., Suzuki, K. & Inamuro, T.2016Flight control simulations of a butterfly-like flapping wing – body model by the immersed boundary – lattice Boltzmann method. Comput. Fluids133, 103-115.10.1016/j.compfluid.2016.04.027 · Zbl 1390.76749
[23] Ristroph, L., Bergou, A. J., Guckenheimer, J., Wang, Z. J. & Cohen, I.2011Paddling mode of forward flight in insects. Phys. Rev. Lett.106, 178103.10.1103/PhysRevLett.106.178103
[24] Shyy, W., Aono, H., Kang, C. K. & Liu, H.2013An Introduction to Flapping Wing Aerodynamics. Cambridge University Press.10.1017/CBO9781139583916
[25] Shyy, W., Lian, Y., Tang, J., Viieru, D. & Liu, H.2008Aerodynamics of Low Reynolds Number Flyers. Cambridge University Press.10.1017/CBO9780511551154
[26] Srygley, R. B. & Thomas, A. L. R.2002Unconventional lift-generating mechanisms in free-flying butterflies. Nature420, 660-664.10.1038/nature01223
[27] Sun, M.2014Insect flight dynamics: stability and control. Rev. Mod. Phys.86, 615-646.10.1103/RevModPhys.86.615
[28] Sunada, S., Kawachi, K., Watanabe, I. & Azuma, A.1993aFundamental analysis of three-dimensional ‘near fling’. J. Expl Biol.183, 217-248.
[29] Sunada, S., Kawachi, K., Watanabe, I. & Azuma, A.1993bPerformance of a butterfly in take-off flight. J. Expl Biol.183, 249-277.
[30] Suzuki, K., Aoki, T. & Yoshino, M.2017Effect of wing mass in free flight of a two-dimensional symmetric flapping wing – body model. Fluid Dyn. Res.49, 055504.
[31] Suzuki, K., Aoki, T. & Yoshino, M.2019Effect of chordwise wing flexibility on flapping flight of a butterfly model using immersed-boundary lattice Boltzmann simulations. Phys. Rev. E100, 013104.
[32] Suzuki, K. & Inamuro, T.2011Effect of internal mass in the simulation of a moving body by the immersed boundary method. Comput. Fluids49, 173-187.10.1016/j.compfluid.2011.05.011 · Zbl 1271.76257
[33] Suzuki, K., Minami, K. & Inamuro, T.2015Lift and thrust generation by a butterfly-like flapping wing – body model: immersed boundary – lattice Boltzmann simulations. J. Fluid Mech.767, 659-695.10.1017/jfm.2015.57
[34] Suzuki, K. & Yoshino, M.2017Aerodynamic comparison of a butterfly-like flapping wing – body model and a revolving-wing model. Fluid Dyn. Res.49, 035512.
[35] Suzuki, K. & Yoshino, M.2018Numerical simulations for aerodynamic performance of a butterfly-like flapping wing – body model with various wing planforms. Commun. Comput. Phys.23, 951-979.10.4208/cicp.OA-2016-0238 · Zbl 1474.76059
[36] Takahashi, H., Tanaka, H., Matsumoto, K. & Shimoyama, I.2012Differential pressure distribution measurement with an MEMS sensor on a free-flying butterfly wing. Bioinspir. Biomim.7, 036020.10.1088/1748-3182/7/3/036020
[37] Wootton, R. J.1993Leading edge section and asymmetric twisting in the wings of flying butterflies (Insecta, Papilionoidea). J. Expl Biol.180, 105-117.
[38] Yokoyama, N., Senda, K., Iima, M. & Hirai, N.2013Aerodynamic forces and vortical structures in flapping butterfly’s forward flight. Phys. Fluids25, 021902.10.1063/1.4790882
[39] Zheng, L., Hedrick, T. L. & Mittal, R.2013Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies. PLoS ONE8, e53060.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.