zbMATH — the first resource for mathematics

On the role of actuation for the control of streaky structures in boundary layers. (English) Zbl 1430.76327
Summary: This work deals with the closed-loop control of streaky structures induced by free-stream turbulence (FST), at the levels of 3.0 % and 3.5 %, in a zero-pressure-gradient transitional boundary layer, by means of localized sensors and actuators. A linear quadratic Gaussian regulator is considered along with a system identification technique to build reduced-order models for control. Three actuators are developed with different spatial supports, corresponding to a baseline shape with only vertical forcing, and to two other shapes obtained by different optimization procedures. A computationally efficient method is derived to obtain an actuator that aims to induce the exact structures that are inside the boundary layer, given in terms of their first spectral proper orthogonal decomposition (SPOD) mode, and an actuator that maximizes the energy of induced downstream structures. All three actuators lead to significant delays in the transition to turbulence and were shown to be robust to mild variations in the FST levels. Integrated total drag reductions observed were up to 21 % and 19 % for turbulence intensity levels of 3.0 % and 3.5 %, respectively, depending on the considered actuator. Differences are understood in terms of the SPOD of actuation and FST-induced fields along with the causality of the control scheme when a cancellation of disturbances is considered along the wall-normal direction. The actuator optimized to generate the leading downstream SPOD mode, representing the streaks in the open-loop flow, leads to the highest transition delay, which can be understood due to its capability of closely cancelling structures in the boundary layer.

76F70 Control of turbulent flows
76F40 Turbulent boundary layers
Full Text: DOI
[1] Andersson, P., Berggren, M. & Henningson, D. S.1999Optimal disturbances and bypass transition in boundary layers. Phys. Fluids11 (1), 134-150. · Zbl 1147.76308
[2] Andersson, P., Brandt, L., Bottaro, A. & Henningson, D. S.2001On the breakdown of boundary layer streaks. J. Fluid Mech.428, 29-60. · Zbl 0983.76025
[3] Asai, M., Minagawa, M. & Nishioka, M.2000Instability and breakdown of the three-dimensional high-shear layer associated with a near-wall low-speed streak. In Laminar-Turbulent Transition, pp. 269-274. Springer.
[4] Asai, M., Minagawa, M. & Nishioka, M.2002The instability and breakdown of a near-wall low-speed streak. J. Fluid Mech.455, 289-314. · Zbl 1147.76300
[5] Bade, K. M., Hanson, R. E., Belson, B. A., Naguib, A. M., Lavoie, P. & Rowley, C. W.2016Reactive control of isolated unsteady streaks in a laminar boundary layer. J. Fluid Mech.795, 808-846.
[6] Bagheri, S., Brandt, L. & Henningson, D. S.2009Input–output analysis, model reduction and control of the flat-plate boundary layer. J. Fluid Mech.620, 263-298. · Zbl 1156.76374
[7] Bagheri, S., Henningson, D. S., Hoepffner, J. & Schmid, P. J.2009Input-output analysis and control design applied to a linear model of spatially developing flows. Appl. Mech. Rev.62 (2), 020803.
[8] Barbagallo, A., Sipp, D. & Schmid, P. J.2009Closed-loop control of an open cavity flow using reduced-order models. J. Fluid Mech.641, 1-50. · Zbl 1183.76701
[9] Barbagallo, A., Sipp, D. & Schmid, P. J.2011Input–output measures for model reduction and closed-loop control: application to global modes. J. Fluid Mech.685, 23-53. · Zbl 1241.76163
[10] Belson, B. A., Semeraro, O., Rowley, C. W. & Henningson, D. S.2013Feedback control of instabilities in the two-dimensional Blasius boundary layer: the role of sensors and actuators. Phys. Fluids25 (5), 054106.
[11] Bendat, J. S. & Piersol, A. G.2011Random Data: Analysis and Measurement Procedures, vol. 729. Wiley. · Zbl 1187.62204
[12] Brandt, L.2014The lift-up effect: the linear mechanism behind transition and turbulence in shear flows. Eur. J. Mech. (B/Fluids)47, 80-96. · Zbl 1297.76073
[13] Brandt, L. & Henningson, D. S.2002Transition of streamwise streaks in zero-pressure-gradient boundary layers. J. Fluid Mech.472, 229-261. · Zbl 1163.76359
[14] Brandt, L., Henningson, D. S. & Ponziani, D.2002Weakly nonlinear analysis of boundary layer receptivity to free-stream disturbances. Phys. Fluids14 (4), 1426-1441. · Zbl 1185.76065
[15] Brandt, L., Schlatter, P. & Henningson, D. S.2004Transition in boundary layers subject to free-stream turbulence. J. Fluid Mech.517, 167-198. · Zbl 1131.76326
[16] Cattafesta, L. N. & Sheplak, M.2011Actuators for active flow control. Annu. Rev. Fluid Mech.43, 247-272. · Zbl 1299.76108
[17] Cavalieri, A. V. G., Rodríguez, D., Jordan, P., Colonius, T. & Gervais, Y.2013Wavepackets in the velocity field of turbulent jets. J. Fluid Mech.730, 559-592. · Zbl 1291.76280
[18] Chevalier, M., Lundbladh, A. & Henningson, D. S.2007 Simson – a pseudo-spectral solver for incompressible boundary layer flow. Tech. Rep. TRITA-MEK.
[19] Durbin, P. & Wu, X.2007Transition beneath vortical disturbances. Annu. Rev. Fluid Mech.39, 107-128.
[20] Ellingsen, T. & Palm, E.1975Stability of linear flow. Phys. Fluids18 (4), 487-488. · Zbl 0308.76030
[21] Fabbiane, N., Bagheri, S. & Henningson, D. S.2017Energy efficiency and performance limitations of linear adaptive control for transition delay. J. Fluid Mech.810, 60-81. · Zbl 1383.76135
[22] Fabbiane, N., Simon, B., Fischer, F., Grundmann, S., Bagheri, S. & Henningson, D. S.2015On the role of adaptivity for robust laminar flow control. J. Fluid Mech.767, R1.
[23] Gautier, N. & Aider, J. L.2014Feed-forward control of a perturbed backward-facing step flow. J. Fluid Mech.759, 181-196.
[24] Hanson, R. E., Bade, K. M., Belson, B. A., Lavoie, P., Naguib, A. M. & Rowley, C. W.2014Feedback control of slowly-varying transient growth by an array of plasma actuators. Phys. Fluids26 (2), 024102.
[25] Hanson, R. E., Lavoie, P., Naguib, A. M. & Morrison, J. F.2010Transient growth instability cancelation by a plasma actuator array. Exp. Fluids49 (6), 1339-1348.
[26] Hervé, A., Sipp, D., Schmid, P. J. & Samuelides, M.2012A physics-based approach to flow control using system identification. J. Fluid Mech.702, 26-58. · Zbl 1248.76052
[27] Hultgren, L. S. & Gustavsson, L. H.1981Algebraic growth of disturbances in a laminar boundary layer. Phys. Fluids24 (6), 1000-1004. · Zbl 0466.76030
[28] Jacobson, S. A. & Reynolds, W. C.1998Active control of streamwise vortices and streaks in boundary layers. J. Fluid Mech.360, 179-211. · Zbl 0922.76022
[29] Juang, J. & Pappa, R. S.1985An eigensystem realization algorithm for modal parameter identification and model reduction. J. Guid.8 (5), 620-627. · Zbl 0589.93008
[30] Juillet, F., Mckeon, B. J. & Schmid, P. J.2014Experimental control of natural perturbations in channel flow. J. Fluid Mech.752, 296-309.
[31] Kachanov, Y. S.1994Physical mechanisms of laminar-boundary-layer transition. Annu. Rev. Fluid Mech.26 (1), 411-482.
[32] Kendall, J.1998Experiments on boundary-layer receptivity to freestream turbulence. In 36th AIAA Aerospace Sciences Meeting and Exhibit, p. 530. AIAA.
[33] Kim, J. H. & Choi, K. S.2016 Report on the properties and operation conditions of the actuators producing a spanwise row of wall-normal jets and the flow induced in the preliminary tests. Tech. Rep. BUTERFLI Project TR.
[34] Klebanoff, P. S.1971Effect of free-stream turbulence on a laminar boundary layer. In Bulletin of the American Physical Society, vol. 16, p. 1323. Bulletin of the American Physical Society.
[35] Kreilos, T., Khapko, T., Schlatter, P., Duguet, Y., Henningson, D. S. & Eckhardt, B.2016Bypass transition and spot nucleation in boundary layers. Phys. Rev. Fluids1 (4), 043602. · Zbl 1284.76106
[36] Landahl, M. T.1980A note on an algebraic instability of inviscid parallel shear flows. J. Fluid Mech.98 (2), 243-251. · Zbl 0428.76049
[37] Levin, O. & Henningson, D. S.2003Exponential vs algebraic growth and transition prediction in boundary layer flow. Flow Turbul. Combust.70 (1-4), 183-210.
[38] Luchini, P.2000Reynolds-number-independent instability of the boundary layer over a flat surface: optimal perturbations. J. Fluid Mech.404, 289-309. · Zbl 0959.76022
[39] Lundell, F.2007Reactive control of transition induced by free-stream turbulence: an experimental demonstration. J. Fluid Mech.585, 41-71. · Zbl 1118.76011
[40] Lundell, F., Monokrousos, A. & Brandt, L.2009Feedback control of boundary layer bypass transition: experimental and numerical progress. In 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, p. 612.
[41] Ma, Z., Ahuja, S. & Rowley, C. W.2011Reduced-order models for control of fluids using the eigensystem realization algorithm. Theor. Comput. Fluid Dyn.25 (1-4), 233-247.
[42] Matsubara, M. & Alfredsson, P. H.2001Disturbance growth in boundary layers subjected to free-stream turbulence. J. Fluid Mech.430, 149-168. · Zbl 0963.76509
[43] Monokrousos, A., Åkervik, E., Brandt, L. & Henningson, D. S.2010Global three-dimensional optimal disturbances in the blasius boundary-layer flow using time-steppers. J. Fluid Mech.650, 181-214. · Zbl 1189.76192
[44] Monokrousos, A., Brandt, L., Schlatter, P. & Henningson, D. S.2008DNS and LES of estimation and control of transition in boundary layers subject to free-stream turbulence. Intl J. Heat Fluid Flow29 (3), 841-855.
[45] Morra, P., Sasaki, K., Hanifi, A., Cavalieri, A. V. G. & Henningson, D. S.2019A realizable data-driven approach to delay bypass transition with control theory. J. Fluid Mech.883, A33.
[46] Ogata, K. & Yang, Y.2002Modern Control Engineering, vol. 4. Prentice Hall.
[47] Osmokrovic, L. P., Hanson, R. E. & Lavoie, P.2014Laminar boundary-layer response to spanwise periodic forcing by dielectric-barrier-discharge plasma-actuator arrays. AIAA J.53 (3), 617-628.
[48] Papadakis, G., Lu, L. & Ricco, P.2016Closed-loop control of boundary layer streaks induced by free-stream turbulence. Phys. Rev. Fluids1 (4), 043501.
[49] Picard, C. & Delville, J.2000Pressure velocity coupling in a subsonic round jet. Intl J. Heat Fluid Flow21 (3), 359-364.
[50] Pralits, J. O., Airiau, C., Hanifi, A. & Henningson, D. S.2000Sensitivity analysis using adjoint parabolized stability equations for compressible flows. Flow Turbul. Combust.65 (3-4), 321-346. · Zbl 1094.76513
[51] Raymer, D.2012Aircraft Design: A Conceptual Approach. American Institute of Aeronautics and Astronautics, Inc.
[52] Reddy, S. C. & Henningson, D. S.1993Energy growth in viscous channel flows. J. Fluid Mech.252, 209-238. · Zbl 0789.76026
[53] Reshotko, E.2001Transient growth: a factor in bypass transition. Phys. Fluids13 (5), 1067-1075. · Zbl 1184.76453
[54] Saric, W. S., Reed, H. L. & Kerschen, E. J.2002Boundary-layer receptivity to freestream disturbances. Annu. Rev. Fluid Mech.34 (1), 291-319. · Zbl 1006.76029
[55] Sasaki, K.2019 Reduced-order models for flow control applications. PhD thesis, Instituto Tecnológico de Aeronáutica.
[56] Sasaki, K., Morra, P., Fabbiane, N., Cavalieri, A. V. G., Hanifi, A. & Henningson, D. S.2018aOn the wave-cancelling nature of boundary layer flow control. In Theoretical and Computational Fluid Dynamics, pp. 1-24. Springer.
[57] Sasaki, K., Tissot, G., Cavalieri, A. V. G., Silvestre, F. J., Jordan, P. & Biau, D.2018bClosed-loop control of a free shear flow: a framework using the parabolized stability equations. Theor. Comput. Fluid Dyn.32 (6), 765-788.
[58] Sasaki, K., Vinuesa, R., Cavalieri, A. V. G., Schlatter, P. & Henningson, D. S.2019Transfer functions for flow predictions in wall-bounded turbulence. J. Fluid Mech.864, 708-745. · Zbl 1415.76361
[59] Schlatter, P., Stolz, S. & Kleiser, L.2004LES of transitional flows using the approximate deconvolution model. Intl J. Heat Fluid Flow25 (3), 549-558.
[60] Schlatter, P., Stolz, S. & Kleiser, L.2006aAnalysis of the SGS energy budget for deconvolution-and relaxation-based models in channel flow. In Direct and Large-Eddy Simulation VI, pp. 135-142. Springer.
[61] Schlatter, P., Stolz, S. & Kleiser, L.2006bLarge-eddy simulation of spatial transition in plane channel flow. J. Turbul.7, N33. · Zbl 1273.76216
[62] Schmid, P. J. & Henningson, D. S.2012Stability and Transition in Shear Flows, vol. 142. Springer Science & Business Media. · Zbl 0966.76003
[63] Schmid, P. J. & Sipp, D.2016Linear control of oscillator and amplifier flows. Phys. Rev. Fluids1 (4), 040501.
[64] Semeraro, O., Bagheri, S., Brandt, L. & Henningson, D. S.2011Feedback control of three-dimensional optimal disturbances using reduced-order models. J. Fluid Mech.677, 63-102. · Zbl 1241.76167
[65] Semeraro, O., Bagheri, S., Brandt, L. & Henningson, D. S.2013aTransition delay in a boundary layer flow using active control. J. Fluid Mech.731, 288-311. · Zbl 1294.76093
[66] Semeraro, O., Jaunet, V., Jordan, P., Cavalieri, A. V. & Lesshafft, L.2016Stochastic and harmonic optimal forcing in subsonic jets. In 22nd AIAA/CEAS Aeroacoustics Conference, pp. 2935-2947.
[67] Semeraro, O., Pralits, J. O., Rowley, C. W. & Henningson, D. S.2013bRiccati-less approach for optimal control and estimation: an application to two-dimensional boundary layers. J. Fluid Mech.731, 394-417. · Zbl 1294.76108
[68] Shahriari, N., Kollert, M. R. & Hanifi, A.2018Control of a swept-wing boundary layer using ring-type plasma actuators. J. Fluid Mech.844, 36-60. · Zbl 1446.76040
[69] Simon, B., Fabbiane, N., Nemitz, T., Bagheri, S., Henningson, D. S. & Grundmann, S.2016In-flight active wave cancelation with delayed-x-LMS control algorithm in a laminar boundary layer. Exp. Fluids57 (10), 160-175.
[70] Tissot, G., Zhang, M., Lajús, F. C., Cavalieri, A. V. G. & Jordan, P.2017Sensitivity of wavepackets in jets to nonlinear effects: the role of the critical layer. J. Fluid Mech.811, 95-137. · Zbl 1383.76123
[71] Torenbeek, E.2013Advanced Aircraft Design: Conceptual Design, Analysis and Optimization of Subsonic Civil Airplanes. Wiley.
[72] Towne, A., Schmidt, O. T. & Colonius, T.2018Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech.847, 821-867. · Zbl 1404.76145
[73] Vaughan, N. J. & Zaki, T. A.2011Stability of zero-pressure-gradient boundary layer distorted by unsteady Klebanoff streaks. J. Fluid Mech.681, 116-153. · Zbl 1241.76183
[74] Welch, P.1967The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust.15 (2), 70-73.
[75] Westin, K. J. A., Boiko, A. V., Klingmann, B. G. B., Kozlov, V. V. & Alfredsson, P. H.1994Experiments in a boundary layer subjected to free stream turbulence. Part 1. Boundary layer structure and receptivity. J. Fluid Mech.281, 193-218.
[76] Zaki, T. A.2013From streaks to spots and on to turbulence: exploring the dynamics of boundary layer transition. Flow Turbul. Combust.91 (3), 451-473.
[77] Zaki, T. A. & Durbin, P. A.2005Mode interaction and the bypass route to transition. J. Fluid Mech.531, 85-111. · Zbl 1070.76024
[78] Zaki, T. A. & Saha, S.2009On shear sheltering and the structure of vortical modes in single-and two-fluid boundary layers. J. Fluid Mech.626, 111-147. · Zbl 1171.76365
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.