zbMATH — the first resource for mathematics

Exact coherent structures in stably stratified plane Couette flow. (English) Zbl 1430.76288
Summary: The existence of exact coherent structures in stably stratified plane Couette flow (gravity perpendicular to the plates) is investigated over Reynolds-Richardson number \((Re-Ri_b)\) space for a fluid of unit Prandtl number \((Pr=1)\) using a combination of numerical and asymptotic techniques. Two states are repeatedly discovered using edge tracking – EQ7 and EQ7-1 in the nomenclature of J. F. Gibson and E. Brand [“Spanwise-localized solutions of planar shear flows”, ibid. 745, 25-61 (2014; doi:10.1017/jfm.2014.89)] – and found to connect with two-dimensional convective roll solutions when tracked to negative \(Ri_b\) (the Rayleigh-Bénard problem with shear). Both these states and M. Nagata’s [“3-Dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity”, ibid. 217, 519-527 (1990; doi:10.1017/S0022112090000829)] original exact solution feel the presence of stable stratification when \(Ri_b=O(Re^{-2})\) or equivalently when the Rayleigh number \(Ra:=-Ri_bRe^2Pr=O(1)\). This is confirmed via a stratified extension of the vortex wave interaction theory of P. Hall and S. Sherwin [ibid. 661, 178-205 (2010; Zbl 1205.76085)]. If the stratification is increased further, EQ7 is found to progressively spanwise and cross-stream localise until a second regime is entered at \(Ri_b=O(Re^{-2/3})\). This corresponds to a stratified version of the boundary region equations regime of K. Deguchi et al. [ibid. 721, 58-85 (2013; Zbl 1287.76099)]. Increasing the stratification further appears to lead to a third, ultimate regime where \(Ri_b=O(1)\) in which the flow fully localises in all three directions at the minimal Kolmogorov scale which then corresponds to the Osmidov scale. Implications for the laminar-turbulent boundary in the \((Re-Ri_b)\) plane are briefly discussed.

76F45 Stratification effects in turbulence
76F06 Transition to turbulence
76E05 Parallel shear flows in hydrodynamic stability
37G99 Local and nonlocal bifurcation theory for dynamical systems
37N10 Dynamical systems in fluid mechanics, oceanography and meteorology
Full Text: DOI
[1] Armenio, V. & Sarkar, S.2002An investigation of stably stratified turbulent channel flow using large-eddy simulation. J. Fluid Mech.449, 1-42. · Zbl 1022.76027
[2] Blackburn, H. M., Hall, P. & Sherwin, S. J.2013Lower branch equilibria in Couette flow: the emergence of canonical states for arbitrary shear flows. J. Fluid Mech.726, R2. · Zbl 1287.76098
[3] Chandler, G. J. & Kerswell, R. R.2013Invariant recurrent solutions embedded in a turbulent two-dimensional Kolmogorov flow. J. Fluid Mech.722, 554-595. · Zbl 1287.76124
[4] Clever, R. M. & Busse, F. H.1992Three-dimensional convection in a horizontal fluid layer subjected to a constant shear. J. Fluid Mech.234, 511-527. · Zbl 0744.76052
[5] Clever, R. M. & Busse, F. H.2000Tertiary and quarternary solutions for plane Couette flow with thermal stratification. In 11th International Couette-Taylor Workshop Held at Bremen, Germany, 1999: Physics of Rotating Fluids (ed. C.Egbers & G.Pfister), Lecture Notes In Physics, vol. 549, pp. 399-416. Springer.
[6] Clever, R. M., Busse, F. H. & Kelly, R. E.1977Instabilities of longitudinal convection rolls in Couette flow. Z. Angew. Math. Phys.28, 771-783. · Zbl 0386.76031
[7] Davey, A. & Reid, W. H.1977On the stability of stratified viscous plane Couette flow. Part 2. Variable buoyancy frequency. J. Fluid Mech.80, 509-525. · Zbl 0354.76033
[8] Deguchi, K.2015Self-sustained states at Kolmogorov microscale. J. Fluid Mech.781, R6. · Zbl 1359.76011
[9] Deguchi, K.2017Scaling of small vortices in stably stratified shear flows. J. Fluid Mech.821, 582-594. · Zbl 1383.76104
[10] Deguchi, K. & Hall, P.2014Canonical exact coherent structures embedded in high Reynolds number flows. Phil. Trans. R. Soc. Lond.372, 20130352. · Zbl 1353.76012
[11] Deguchi, K. & Hall, P.2015Asymptotic descriptions of oblique coherent structures in shear flows. J. Fluid Mech.782, 356-367. · Zbl 1381.76088
[12] Deguchi, K., Hall, P. & Walton, A. G.2013The emergence of localized vortex-wave interaction states in plane Couette flow. J. Fluid Mech.721, 58-85. · Zbl 1287.76099
[13] Deusebio, E., Caulfield, C. P. & Taylor, J. R.2015The intermittency boundary in stratified plane Couette flow. J. Fluid Mech.781, 298-329. · Zbl 1359.76147
[14] Drazin, P. G. & Reid, W. H.1981Hydrodynamic Stability. Cambridge University Press.
[15] Duguet, Y., Brandt, L. & Larsson, B. R.2010Towards minimal perturbations in transitional plane Couette flow. Phys. Rev. E82, 026316.
[16] Duguet, Y., Willis, A. P. & Kerswell, R. R.2008Transition in pipe flow: the saddle structure on the boundary of turbulence. J. Fluid Mech.613, 255-274. · Zbl 1151.76495
[17] Eaves, T. S. & Caulfield, C. P.2015Disruption of SSP/VWI states by stable stratification. J. Fluid Mech.784, 548-564. · Zbl 1382.76109
[18] Eckhardt, B., Schneider, T. M., Hof, B. & Westerweel, J.2007Turbulence transition in pipe flow. Annu. Rev. Fluid Mech.39, 447-468. · Zbl 1296.76062
[19] Faisst, H. & Eckhardt, B.2003Travelling waves in pipe flow. Phys. Rev. Lett.91, 224502. · Zbl 1116.76362
[20] Garcia-Villalba, M. & del Alamo, J. C.2011Turbulence modification by stable stratification in channel flow. Phys. Fluids23, 045104.
[21] Gibson, J. F. & Brand, E.2014Spanwise-localized solutions of planar shear flows. J. Fluid Mech.745, 25-61.
[22] Gibson, J. F. & Cvitanović, P.2010Geometry of the turbulence in wall-bounded shear flows: periodic orbits. Phys. Scr.142, 014007.
[23] Gibson, J. F., Halcrow, J. & Cvitanović, P.2008Visualizing the geometry of state space in plane Couette flow. J. Fluid Mech.611, 107-130. · Zbl 1151.76453
[24] Gibson, J. F., Halcrow, J. & Cvitanović, P.2009Equilibrium and travelling-wave solutions of plane Couette flow. J. Fluid Mech.638, 243-266. · Zbl 1183.76688
[25] Generalis, S. & Nagata, M.2003Transition in homogeneously heated inclined plane parallel shear flows. Trans. ASME J. Heat Transfer.125, 795-803.
[26] Hall, P.2012Vortex-wave interactions/self-sustained processes in high Prandtl number natural convection in a vertical channel with moving sidewalls. Stud. Appl. Maths129, 1-25. · Zbl 1314.76020
[27] Hall, P. & Sherwin, S.2010Streamwise vortices in shear flows: harbingers of transition and the skeleton of coherent strctures. J. Fluid Mech.661, 178-205. · Zbl 1205.76085
[28] Hall, P. & Smith, F. T.1991On strongly nonlinear vortex/wave interactions in boundary-layer transition. J. Fluid Mech.227, 641-666. · Zbl 0721.76027
[29] Hof, B., van Doorne, C. W. H., Westerweel, J., Nieuwstadt, F. T. M., Faisst, H., Eckhardt, B., Wedin, H., Kerswell, R. R. & Waleffe, F.2004Experimental observation of nonlinear travelling waves in turbulent pipe flow. Science305, 1594-1598.
[30] Howard, L. N. & Maslowe, S. A.1973Stability of stratified shear flows. Boundary-Layer Meteorol.4, 511-523.
[31] Huppert1973Howard’s technique for perturbing neutral solutions of the Taylor-Goldstein equation. J. Fluid Mech.57, 361-368. · Zbl 0265.76054
[32] Itano, T. & Generalis, S. C.2009Hairpin vortex solution in planar Couette flow: a tapestry of knotted vortices. Phys. Rev. Lett.102, 114501.
[33] Itano, T. & Toh, S.2001The dynamics of bursting process in wall turbulence. J. Phys. Soc. Japan70, 703-716.
[34] Joseph, D. D.1966Nonlinear stability of the Boussinesq equations by the method of energy. Arch. Rat. Mech. Anal.22, 163-184. · Zbl 0141.43803
[35] Kawahara, G. & Kida, S.2001Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst. J. Fluid Mech.449, 291-300. · Zbl 0996.76034
[36] Kawahara, G., Uhlmann, M. & van Veen, L.2012The significance of simple invariant solutions in turbulent flows. Annu. Rev. Fluid Mech.44, 203-225. · Zbl 1352.76031
[37] Kelly, R. E.1977The onset and development of Rayleigh-Benard convection in shear flows: a review. In Physicochemical Hydrodynamics (ed. D. B.Spaulding), pp. 65-79. Advance Publications.
[38] Kerswell, R. R.2005Recent progress in understanding the transition to turbulence in a pipe. Nonlinearity18, R17-R44. · Zbl 1084.76033
[39] Kerswell, R. R. & Tutty, O. R.2007Recurrence of travelling waves in transitional pipe flow. J. Fluid Mech.584, 69-102. · Zbl 1123.76022
[40] Lucas, D. & Kerswell, R. R.2015Recurrent flow analysis in spatiotemporally chaotic 2-dimensional Kolmogorov flow. Phys. Fluids27, 045106. · Zbl 1326.76044
[41] Mellibovsky, F., Meseguer, A., Schneider, T. M. & Eckhardt, B.2009Transition in localized pipe flow turbulene. Phys. Rev. Lett.103, 054502.
[42] Nagata, M.19903-Dimensional finite-amplitude solutions in plane Couette flow – bifurcation from infinity. J. Fluid Mech.217, 519-527.
[43] Olvera, D. & Kerswell, R. R.2017 Optimising energy growth as a tool for finding exact coherent structures. Phys. Rev. Fluids (submitted) arXiv:1701.09103.
[44] Pringle, C. C. T., Willis, A. P. & Kerswell, R. R.2012Minimal seeds for shear flow turbulence: using nonlinear transient growth to touch the edge of turbulence. J. Fluid Mech.702, 415-443. · Zbl 1248.76075
[45] Rabin, S. M. E., Caulfield, C. P. & Kerswell, R. R.2012Triggering turbulence efficiently in plane Couette flow. J. Fluid Mech.712, 244-272. · Zbl 1275.76091
[46] Schneider, T. M. & Eckhardt, B.2009Edge states intermediate between laminar and turbulent dynamics in pipe flow. Phil. Trans. R. Soc. Lond.1888, 577-587. · Zbl 1221.76097
[47] Schneider, T. M., Eckhardt, B. & Yorke, J. A.2007Turbulence transition and the edge of chaos in pipe flow. Phys. Rev. Lett.99, 034502.
[48] Schneider, T. M., Gibson, J. F., Lagher, M., De Lillo, F. & Eckhardt, B.2008Laminar-turbulent boundary in plane Couette flow. Phys. Rev. E78, 037301.
[49] Schneider, T. M., Gibson, T. M. & Burke, J.2010aSnakes and ladders: localized solutions in plane Couette flow. Phys. Rev. Lett.104, 104501.
[50] Schneider, T. M., Marinc, D. & Eckhardt, B.2010bLocalized edge states nucleate turbulence in extended plane Couette cells. J. Fluid Mech.646, 441-451. · Zbl 1189.76258
[51] Skufca, J. D., Yorke, J. A. & Eckhardt, B.2006Edge of chaos in a parallel shear flow. Phys. Rev. Lett.96, 174101.
[52] Taylor, J. R.2008 Numerical simulations of the stratified oceanic bottom boundary layer, PhD thesis, Mechanical Engineering, University of California, San Diego (see http://www.damtp.cam.ac.uk/user/jrt51/files.html for Diablo).
[53] Thorpe, S. A.2007The Turbulent Ocean. Cambridge University Press. · Zbl 1130.76001
[54] Viswanath, D.2007Recurrent motions within plane Couette turbulence. J. Fluid Mech.580, 339-358. · Zbl 1175.76074
[55] Viswanath, D. & Cvitanović, P.2009Stable manifolds and the transition to turbulence in pipe flow. J. Fluid Mech.627, 215-233. · Zbl 1171.76386
[56] Waleffe, F.1995Hydrodynamic stability and turbulence – beyond transients to a self-sustaining process. Stud. Appl. Maths95, 319-343. · Zbl 0838.76026
[57] Waleffe, F.1997On a self-sustaining process in shear flows. Phys. Fluids9, 883-900.
[58] Waleffe, F.1998Three-dimensional coherent states in plane shear flows. Phys. Rev. Lett.81, 4140-4143.
[59] Wang, J., Gibson, J. F. & Waleffe, F.2007Lower branch coherent state: transition and control. Phys. Rev. Lett.98, 204501.
[60] Wedin, H. & Kerswell, R. R.2004Exact coherent structures in pipe flow: travelling wave solutions. J. Fluid Mech.508, 333-371. · Zbl 1065.76072
[61] Willis, A. P., Cvitanovic, P. & Avila, M.2013Revealing the state space of turbulent pipe flow by symmetry reduction. J. Fluid Mech.721, 514-540. · Zbl 1287.76155
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.