zbMATH — the first resource for mathematics

Dynamics of spatially localized states in transitional plane Couette flow. (English) Zbl 1430.76224
Summary: Unsteady spatially localized states such as puffs, slugs or spots play an important role in transition to turbulence. In plane Couette flow, steady versions of these states are found on two intertwined solution branches describing homoclinic snaking T. M. Schneider [“Snakes and ladders: localized solutions of plane Couette flow”, Phys. Rev. Lett. 104, No. 10, Article ID 104501, 4 p. (2010; doi:10.1103/PhysRevLett.104.104501)]. These branches can be used to generate a number of spatially localized initial conditions whose transition can be investigated. From the low Reynolds numbers where homoclinic snaking is first observed \((Re<175)\) to transitional ones \((Re\approx 325)\), these spatially localized states traverse various regimes where their relaminarization time and dynamics are affected by the dynamical structure of phase space. These regimes are reported and characterized in this paper for a \(4\pi \)-periodic domain in the streamwise direction as a function of the two remaining variables: the Reynolds number and the width of the localized pattern. Close to the snaking, localized states are attracted by spatially localized periodic orbits before relaminarizing. At larger values of the Reynolds number, the flow enters a chaotic transient of variable duration before relaminarizing. Very long chaotic transients \((t>10^4)\) can be observed without difficulty for relatively low values of the Reynolds number \((Re\approx 250)\).

76F06 Transition to turbulence
76F20 Dynamical systems approach to turbulence
Full Text: DOI
[1] Avila, K.; Moxey, D.; De Lozar, A.; Avila, M.; Barkley, D.; Hof, B., The onset of turbulence in pipe flow, Science, 333, 6039, 192-196, (2011) · Zbl 1411.76035
[2] Avila, M.; Willis, A. P.; Hof, B., On the transient nature of localized pipe flow turbulence, J. Fluid Mech., 646, 127-136, (2010) · Zbl 1189.76262
[3] Barkley, D., Theoretical perspective on the route to turbulence in a pipe, J. Fluid Mech., 803, (2016) · Zbl 1454.76047
[4] Barkley, D. & Tuckerman, L. S.2005Turbulent-laminar patterns in plane Couette flow. In IUTAM Symposium on Laminar-Turbulent Transition and Finite Amplitude Solutions, pp. 107-127. Springer.
[5] Beaume, C.; Bergeon, A.; Knobloch, E., Convectons and secondary snaking in three-dimensional natural doubly diffusive convection, Phys. Fluids, 25, 2, (2013)
[6] Beaume, C.; Bergeon, A.; Knobloch, E., Three-dimensional doubly diffusive convectons: instability and transition to complex dynamics, J. Fluid Mech., 840, 74-105, (2018) · Zbl 1419.76214
[7] Bergeon, A.; Knobloch, E., Spatially localized states in natural doubly diffusive convection, Phys. Fluids, 20, (2008) · Zbl 1182.76055
[8] Burke, J.; Dawes, J. H. P., Localized states in an extended Swift-Hohenberg equation, SIAM J. Appl. Dyn. Syst., 11, 1, 261-284, (2012) · Zbl 1242.35047
[9] Burke, J.; Knobloch, E., Localized states in the generalized Swift-Hohenberg equation, Phys. Rev. E, 73, 5, (2006) · Zbl 1236.35144
[10] Chantry, M.; Tuckerman, L. S.; Barkley, D., Universal continuous transition to turbulence in a planar shear flow, J. Fluid Mech., 824, (2017) · Zbl 1374.76085
[11] Coullet, P.; Riera, C.; Tresser, C., Stable static localized structures in one dimension, Phys. Rev. Lett., 84, 3069-3072, (2000)
[12] Dauchot, O.; Daviaud, F., Finite amplitude perturbation and spots growth mechanism in plane Couette flow, Phys. Fluids, 7, 2, 335-343, (1995)
[13] Duguet, Y.; Le Maître, O.; Schlatter, P., Stochastic and deterministic motion of a laminar-turbulent front in a spanwisely extended Couette flow, Phys. Rev. E, 84, 6, (2011)
[14] Duguet, Y.; Schlatter, P., Oblique laminar-turbulent interfaces in plane shear flows, Phys. Rev. Lett., 110, (2013)
[15] Duguet, Y.; Schlatter, P.; Henningson, D. S., Localized edge states in plane Couette flow, Phys. Fluids, 21, 11, (2009) · Zbl 1183.76187
[16] Eckhardt, B.; Schneider, T. M.; Hof, B.; Westerweel, J., Turbulence transition in pipe flow, Annu. Rev. Fluid Mech., 39, 447-468, (2007) · Zbl 1296.76062
[17] Gibson, J. F.2014 Channelflow: a spectral Navier-Stokes simulator in C++. Tech. Rep., University of New Hampshire, Channelflow.org.
[18] Gibson, J. F.; Halcrow, J.; Cvitanović, P., Equilibrium and travelling-wave solutions of plane Couette flow, J. Fluid Mech., 638, 243-266, (2009) · Zbl 1183.76688
[19] Gibson, J. F.; Schneider, T. M., Homoclinic snaking in plane Couette flow: bending, skewing and finite-size effects, J. Fluid Mech., 794, 530-551, (2016)
[20] Halcrow, J.; Gibson, J. F.; Cvitanović, P.; Viswanath, D., Heteroclinic connections in plane Couette flow, J. Fluid Mech., 621, 365-376, (2009) · Zbl 1171.76383
[21] Hamilton, J. M.; Kim, J.; Waleffe, F., Regeneration mechanisms of near-wall turbulence structures, J. Fluid Mech., 287, 317-348, (1995) · Zbl 0867.76032
[22] Kawahara, G.; Kida, S., Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst, J. Fluid Mech., 449, 291-300, (2001) · Zbl 0996.76034
[23] Knobloch, E., Spatial localization in dissipative systems, Annu. Rev. Condens. Matter Phys., 6, 1, 325-359, (2015)
[24] Lemoult, G.; Shi, L.; Avila, K.; Jalikop, S. V.; Avila, M.; Hof, B., Directed percolation phase transition to sustained turbulence in Couette flow, Nat. Phys., 12, 3, 254-258, (2016)
[25] Lloyd, D. J. B.; Gollwitzer, C.; Rehberg, C.; Richter, R., Homoclinic snaking near the surface instability of a polarizable fluid, J. Fluid Mech., 783, 283-305, (2015) · Zbl 1382.76291
[26] Mercader, I.; Batiste, O.; Alonso, A.; Knobloch, E., Convectons, anticonvectons and multiconvectons in binary fluid convection, J. Fluid Mech., 667, 586-606, (2011) · Zbl 1225.76107
[27] Meseguer, A.; Trefethen, L. N., Linearized pipe flow to Reynolds number 107, J. Comput. Phys., 186, 178-197, (2003) · Zbl 1047.76565
[28] Nagata, M., Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity, J. Fluid Mech., 217, 519-527, (1990)
[29] Olvera, D.; Kerswell, R. R., Optimizing energy growth as a tool for finding exact coherent structures, Phys. Rev. Fluids, 2, (2017)
[30] Orszag, S. A., Accurate solution of the Orr-Sommerfeld stability equation, J. Fluid Mech., 50, 689-703, (1971) · Zbl 0237.76027
[31] Pomeau, Y., Front motion, metastability and subcritical bifurcations in hydrodynamics, Physica D, 23, 1-3, 3-11, (1986)
[32] Romanov, V. A., Stability of plane-parallel Couette flow, Funct. Anal. Appl., 7, 2, 137-146, (1973) · Zbl 0287.76037
[33] Saarloos, W. V., Front propagation into unstable states, Phys. Rep., 386, 29-222, (2003) · Zbl 1042.74029
[34] Sano, M.; Tamai, K., A universal transition to turbulence in channel flow, Nat. Phys., 12, 3, 249-253, (2016)
[35] Schmid, P. J. & Henningson, D. S.2001Stability and Transition in Shear Flows, vol. 142. Springer. · Zbl 0966.76003
[36] Schmiegel, A.; Eckhardt, B., Persistent turbulence in annealed plane Couette flow, Europhys. Lett., 51, 4, 395-400, (2000)
[37] Schneider, T. M.; Eckhardt, B.; Yorke, J. A., Turbulence transition and the edge of chaos in pipe flow, Phys. Rev. Lett., 99, 3, (2007)
[38] Schneider, T. M.; Gibson, J. F.; Burke, J., Snakes and ladders: localized solutions of plane Couette flow, Phys. Rev. Lett., 104, 10, (2010)
[39] Schneider, T. M.; Gibson, J. F.; Lagha, M.; De Lillo, F.; Eckhardt, B., Laminar-turbulent boundary in plane Couette flow, Phys. Rev. E, 78, 3, (2008)
[40] Schneider, T. M.; Marinc, D.; Eckhardt, B., Localized edge states nucleate turbulence in extended plane Couette cells, J. Fluid Mech., 646, 441-451, (2010) · Zbl 1189.76258
[41] Shi, L.; Avila, M.; Hof, B., Scale invariance at the onset of turbulence in Couette flow, Phys. Rev. Lett., 110, 20, (2013)
[42] Skufca, J. D.; Yorke, J. A.; Eckhardt, B., Edge of chaos in a parallel shear flow, Phys. Rev. Lett., 96, 17, (2006)
[43] Viswanath, D., Recurrent motions within plane Couette turbulence, J. Fluid Mech., 580, 339-358, (2007) · Zbl 1175.76074
[44] Waleffe, F., On a self-sustaining process in shear flows, Phys. Fluids, 9, 4, 883-900, (1997)
[45] Waleffe, F., Turbulence and Interactions: Exact Coherent Structures in Turbulent Shear Flows, (2009), Springer
[46] Wang, J.; Gibson, J.; Waleffe, F., Lower branch coherent states in shear flows: transition and control, Phys. Rev. Lett., 98, 20, (2007)
[47] Willis, A. P.; Kerswell, R. R., Critical behavior in the relaminarization of localized turbulence in pipe flow, Phys. Rev. Lett., 98, 1, (2007)
[48] Woods, P. D.; Champneys, A. R., Heteroclinic tangles and homoclinic snaking in the unfolding of a degenerate reversible Hamiltonian-Hopf bifurcation, Physica D, 129, 147-170, (1999) · Zbl 0952.37009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.