×

Control of baroclinic instability by submesoscale topography. (English) Zbl 1430.76193

Summary: This study explores the control of mesoscale variability by topographic features with lateral scales that are less than the scale of the eddies generated by baroclinic instability. These dynamics are described using a combination of numerical simulations and an asymptotic multiscale model. The multiscale method makes it possible to express the system dynamics by a closed set of equations written entirely in terms of mesoscale variables, thereby providing a physical basis for the development of submesoscale parameterization schemes. The submesoscale topography is shown to influence such fundamental properties of mesoscale variability as the meridional eddy-induced transport and eddy kinetic energy. It is argued that the adverse influence of submesoscale topography on baroclinic instability is ultimately caused by the homogenization tendency of potential vorticity in the bottom density layer. The multiscale model formally assumes a substantial separation between the scales of interacting flow components. However, the comparison of asymptotic solutions with their submesoscale-resolving numerical counterparts indicates that the multiscale method is remarkably accurate even when scale separation is virtually non-existent.

MSC:

76E20 Stability and instability of geophysical and astrophysical flows
86A05 Hydrology, hydrography, oceanography
76U05 General theory of rotating fluids
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Balmforth, N. J. & Young, Y.-N.2002Stratified Kolmogorov flow. J. Fluid Mech.450, 131-167. · Zbl 1041.76023
[2] Balmforth, N. J. & Young, Y.-N.2005Stratified Kolmogorov flow. Part 2. J. Fluid Mech.528, 23-42.
[3] Benilov, E. S.2001Baroclinic instability of two-layer flows over one-dimensional bottom topography. J. Phys. Oceanogr.31, 2019-2025.
[4] Bretherton, F. P.1966Critical layer instability in baroclinic flows. Q. J. R. Meteorol. Soc.92, 325-334.
[5] Brown, J., Gulliver, L. & Radko, T.2019Effects of topography and orientation on the nonlinear equilibration of baroclinic instability. J. Geophys. Res. Oceans124, doi:10.1029/2019JC015297.
[6] Callies, J.2018Restratification of abyssal mixing layers by submesoscale baroclinic eddies. J. Phys. Oceanogr.48, 1995-2010.
[7] Charney, J.1948On the scale of atmospheric motions. Geophys. Publ.17, 1-17.
[8] Charney, J.1971Geostrophic turbulence. J. Atmos. Sci.28, 1087-1095.
[9] Chassignet, E. P. & Xu, X.2017Impact of horizontal resolution (1/12^° to 1/50^° ) on gulf stream separation, penetration, and variability. J. Phys. Oceanogr.47, 1999-2021.
[10] Chelton, D. B., Schlax, M. G., Samelson, R. M. & de Szoeke, R. A.2007Global observations of large oceanic eddies. Geophys. Res. Lett.34, L15606.
[11] Chen, C. & Kamenkovich, I.2013Effects of topography on baroclinic instability. J. Phys. Oceanogr.43, 790-804.
[12] Chen, C., Kamenkovich, I. & Berloff, P.2015On the dynamics of flows induced by topographic ridges. J. Phys. Oceanogr.45, 927-940.
[13] Dewar, W. K.1998Topography and barotropic transport control by bottom friction. J. Mar. Res.56, 295-328.
[14] Dewar, W. K., McWilliams, J. C. & Molemaker, M. J.2015Centrifugal instability and mixing in the California undercurrent. J. Phys. Oceanogr.45, 1224-1241.
[15] Dubrulle, B. & Frisch, U.1991Eddy viscosity of parity-invariant flow. Phys. Rev. A43, 5355-5364.
[16] Fox-Kemper, B., Ferrari, R. & Hallberg, R.2008Parameterization of mixed layer eddies. Part I: theory and diagnosis. J. Phys. Oceanogr.38, 1145-1165.
[17] Gama, S., Vergassola, M. & Frisch, U.1994Negative eddy viscosity in isotropically forced 2-dimensional flow – linear and nonlinear dynamics. J. Fluid Mech.260, 95-126.
[18] Goff, J. A. & Jordan, T. H.1988Stochastic modeling of seafloor morphology: inversion of sea beam data for second-order statistics. J. Geophys. Res.93, 13,589-13,608.
[19] Griffies, S. M., Winton, M., Anderson, W. G., Benson, R., Delworth, T. L., Dufour, C. O., Dunne, J. P., Goddard, P., Morrison, A. K., Rosati, A.2015Impacts on ocean heat from transient mesoscale eddies in a hierarchy of climate models. J. Clim.28, 952-977.
[20] Gula, J., Molemaker, M. J. & McWilliams, J. C.2016Topographic generation of submesoscale centrifugal instability and energy dissipation. Nat. Commun.7, 12811.
[21] Hart, J. E.1975Baroclinic instability over a slope. Part I: linear theory. J. Phys. Oceanogr.5, 625-633.
[22] Holloway, G.1986Estimation of oceanic eddy transports from satellite altimetry. Nature323, 243-244.
[23] Holloway, G.2008Observing global ocean topostrophy. J. Geophys. Res.113, C07054.
[24] LaCasce, J., Escartin, J., Chassignet, E. P. & Xu, X.2019Jet instability over smooth, corrugated, and realistic bathymetry. J. Phys. Oceanogr.49, 585-605.
[25] Levy, M., Klein, P., Treguier, A.-M., Iovino, D., Madec, G., Masson, S. & Takahashi, K.2010Modifications of gyre circulation by sub-mesoscale physics. Ocean Model.34, 1-15.
[26] Manfroi, A. & Young, W.1999Slow evolution of zonal jets on the beta plane. J. Atmos. Sci.56, 784-800.
[27] Manfroi, A. & Young, W.2002Stability of beta-plane Kolmogorov flow. Physica D162, 208-232. · Zbl 0983.86002
[28] Marshall, D. P., Maddison, J. R. & Berloff, P. S.2012A framework for parameterizing eddy potential vorticity fluxes. J. Phys. Oceanogr.42, 539-557.
[29] Marshall, J. & Radko, T.2003Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr.33, 2341-2354.
[30] Masumoto, Y., Miyazawa, Y., Tsumune, D., Tsubono, T., Kobayashi, T., Kawamura, H., Estournel, C., Marsaleix, P., Lanerolle, L., Mehra, A.2012Oceanic dispersion simulations of 137Cs released from the Fukushima Daiichi nuclear power plant. Elements8, 207-212.
[31] McGillicuddy, D. J.Jr2016Mechanisms of physical-biological-biogeochemical interaction at the oceanic mesoscale. Annu. Rev. Mar. Sci.8, 125-159.
[32] McWilliams, J. C.2008The nature and consequences of oceanic eddies. In Ocean Modeling in an Eddying Regime, vol. 177, pp. 5-15. John Wiley & Sons.
[33] McWilliams, J. C.2016Submesoscale currents in the ocean. Proc. R. Soc. Lond. A472, 1-32.
[34] Mei, C. C. & Vernescu, M.2010Homogenization Methods for Multiscale Mechanics. p. 330. World Scientific Publishing. · Zbl 1210.74005
[35] Meshalkin, L. & Sinai, Y.1961Investigation of the stability of a stationary solution of a system of equations for the plane movement of an incompressible viscous fluid. J. Appl. Math. Mech.25, 1700-1705. · Zbl 0108.39501
[36] Nikurashin, M., Ferrari, R., Grisouard, N. & Polzin, K.2014The impact of finite-amplitude bottom topography on internal wave generation in the Southern Ocean. J. Phys. Oceanogr.44, 2938-2950.
[37] Nikurashin, M., Vallis, G. K. & Adcroft, A.2013Routes to energy dissipation for geostrophic flows in the Southern Ocean. Nat. Geosci.6, 48-51.
[38] Novikov, A. & Papanicolaou, G.2001Eddy viscosity of cellular flows. J. Fluid Mech.446, 173-198. · Zbl 0997.76030
[39] Olson, D. B.1991Rings in the ocean. Annu. Rev. Earth Planet. Sci.19, 283-311.
[40] Pedlosky, J.1975On secondary baroclinic instability and the meridional scale of motion in the ocean. J. Phys. Oceanogr.5, 603-607.
[41] Pedlosky, J.1987Geophysical Fluid Dynamics. p. 710. Springer.
[42] Phillips, N. A.1951A simple three-dimensional model for the study of large scale extra tropical flow pattern. J. Met.8, 381-394.
[43] Radko, T.2011Eddy viscosity and diffusivity in the modon-sea model. J. Mar. Res.69, 723-752.
[44] Radko, T.2014Applicability and failure of the flux-gradient laws in double-diffusive convection. J. Fluid Mech.750, 33-72.
[45] Radko, T.2016On the spontaneous generation of large-scale eddy-induced patterns: the Average Eddy model. J. Fluid. Mech.809, 316-344. · Zbl 1383.76272
[46] Radko, T.2019Thermohaline layering on the microscale. J. Fluid Mech.862, 672-695. · Zbl 1415.76590
[47] Radko, T. & Kamenkovich, I.2017On the topographic modulation of large-scale eddying flows. J. Phys. Oceanogr.47, 2157-2172.
[48] Radko, T. D., Peixoto de Carvalho, D. & Flanagan, J.2014Nonlinear equilibration of baroclinic instability: the growth rate balance model. J. Phys. Oceanogr.44, 1919-1940.
[49] Rhines, P. B. & Young, W. R.1982A theory of the wind-driven circulation. Part I: mid-ocean gyres. J. Mar. Res.40 (Suppl), 559-596.
[50] Robinson, A. R.(Ed.) 1983Eddies in Marine Science, p. 609. Springer.
[51] Rosso, I., Hogg, A. M., Kiss, A. E. & Gayen, B.2015Topographic influence on submesoscale dynamics in the Southern Ocean. Geophys. Res. Lett.42, 1139-1147.
[52] Stammer, D.1998On eddy characteristics, eddy transports, and mean flow properties. J. Phys. Oceanogr.28, 727-739.
[53] Thomas, L. N., Tandon, A. & Mahadevan, A.2008Sub-mesoscale processes and dynamics. In Ocean Modeling in an Eddying Regime (ed. M. W.Hecht & H.Hasumi), Geophysical Monograph Series, vol. 177, pp. 17-38. American Geophysical Union.
[54] Thompson, A. F.2010Jet formation and evolution in baroclinic turbulence with simple topography. J. Phys. Oceanogr.40, 257-278.
[55] Thompson, A. F. & Sallée, J.-B.2012Jets and topography: jet transitions and the impact on transport in the Antarctic Circumpolar Current. J. Phys. Oceanogr.42, 956-972.
[56] Treguier, A. M. & McWilliams, J. C.1990Topographic influences on wind-driven, stratified flow in a 𝛽-plane channel: an idealized model for the Antarctic Circumpolar Current. J. Phys. Oceanogr.20, 321-343.
[57] Treguier, A. M. & Panetta, R. L.1994Multiple zonal jets in a quasi-geostrophic model of the Antarctic Circumpolar Current. J. Phys. Oceanogr.24, 2263-2277.
[58] Vallis, G. K.2006Atmospheric and Oceanic Fluid Dynamics. p. 745. Cambridge University Press. · Zbl 1374.86002
[59] Vallis, G. K. & Maltrud, M. E.1993Generation of mean flows and jets on a beta plane and over topography. J. Phys. Oceanogr.23, 1346-1362.
[60] Vanneste, J.2000Enhanced dissipation for quasi-geostrophic motion over small-scale topography. J. Fluid Mech.407, 105-122. · Zbl 0956.76095
[61] Vanneste, J.2003Nonlinear dynamics over rough topography: homogeneous and stratified quasi-geostrophic theory. J. Fluid Mech.474, 299-318. · Zbl 1129.76374
[62] Whitt, D. B. & Taylor, J. R.2017Energetic submesoscales maintain strong mixed layer stratification during an autumn storm. J. Phys. Oceanogr.47, 2419-2427.
[63] Wirth, A., Gama, S. & Frisch, U.1995Eddy viscosity of three-dimensional flow. J. Fluid Mech.288, 249-264. · Zbl 0854.76034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.