zbMATH — the first resource for mathematics

Pseudospectra localization sets of tensors with applications. (English) Zbl 1430.15008
Summary: A localization set and an exclusion set for the pseudospectrum of tensors are given. As applications, we first use the pseudospectra localization sets to locate asymptotically stable sets for homogeneous dynamical systems, and then two upper bounds for the largest modulus of the asymptotically stable set are given to estimate the asymptotic decay rate for homogeneous dynamical systems. We also provide two lower bounds for the preservation measure to the positive definiteness of the homogeneous polynomial form. In addition, some sufficient conditions for the global uniqueness and solvability of tensor complementarity problems are presented. The last application is to test copositivity of some potential fields in particle physics.

15A18 Eigenvalues, singular values, and eigenvectors
15A69 Multilinear algebra, tensor calculus
65F15 Numerical computation of eigenvalues and eigenvectors of matrices
65F10 Iterative numerical methods for linear systems
Full Text: DOI
[1] L.H. Lim, Singular values and eigenvalues of tensors: a variational approach, in: CAMSAP’05: Proceeding of the IEEE International Workshop on Computational Advances in MultiSensor Adaptive Processing, 2005, pp. 129-132.
[2] Ng, M.; Qi, L.; Zhou, G., Finding the largest eigenvalue of a nonnegative tensor, SIAM J. Matrix Anal. Appl., 31, 1090-1099 (2009) · Zbl 1197.65036
[3] Qi, L. Q., Eigenvalues of a real supersymmetric tensor, J. Symb. Comput., 40, 1302-1324 (2005) · Zbl 1125.15014
[4] Qi, L. Q.; Luo, Z., Tensor Analysis: Spectral Theory and Special Tensors (2017), Society for Industrial and Applied Mathematics: Society for Industrial and Applied Mathematics Philadelphia · Zbl 1370.15001
[5] Liu, L.; Wu, W., Dynamical system for computing largest generalized eigenvalue, (Advances in Neural Networks-ISNN 2006 (2006), Springer-Verlag: Springer-Verlag Berlin Heidelberg), 399-404
[6] Bakhadda, B.; Bouiadjra, M. B.; Bourada, F., Dynamic and bending analysis of carbon nanotube-reinforced composite plates with elastic foundation, Wind Struct., 27, 5, 311-324 (2018)
[7] Bose, N. K., Test for Lyapunov stability by rational operations, IEEE Trans. Automat. Control, AC 20, 700-702 (1975) · Zbl 0318.93023
[8] Embree, M.; Trefethen, L. N., Generalizing eigenvalue theorems to pseudospectra theorems, SIAM J. Sci. Comput., 23, 2, 583-590 (2001) · Zbl 0995.15003
[9] Kostić, V. R.; Cvetković, Lj.; Cvetković, D. Lj., Pseudospectra localizations and their applications, Numer. Linear Algebra Appl., 23, 356-372 (2016) · Zbl 1413.15035
[10] Trefethen, L. N.; Embree, M., Spectra and pseudospectra, (The Behaviour of Nonnormal Matrices and Operators (2005), Princeton University Press) · Zbl 1085.15009
[11] Youcef, D. O.; Kaci, A.; Benzair, A., Dynamic analysis of nanoscale beams including surface stress effects, Smart Struct. Syst., 21, 1, 65-74 (2018)
[12] Wei, Y.; Ding, W., Theory and Computation of Tensors: Multi-Dimensional Arrays (2017), Academic Press: Academic Press London
[13] Ding, W.; Hou, Z.; Wei, Y., Tensor logarithmic norm and its applications, Numer. Linear Algebra Appl., 23, 989-1006 (2016) · Zbl 1424.15046
[14] Abdelaziz, H. H.; Meziane, M. A.A.; Bousahla, A. A., An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions, Steel Compos. Struct., 25, 6, 693-704 (2017)
[15] Abualnour, M.; Houari, M. S.A.; Tounsi, A.; Mahmoud, S. R., A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates, Compos. Struct., 184, 688-697 (2018)
[16] Bouafia, K.; Kaci, A.; Houari, M. S.A.; Benzair, A.; Tounsi, A., A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams, Smart Struct. Syst., 19, 2, 115-126 (2017)
[17] Bouhadra, A.; Tounsi, A.; Bousahla, A. A., Improved HSDT accounting for effect of thickness stretching in advanced composite plates, Struct. Eng. Mech., 66, 1, 61-73 (2018)
[18] Bourada, F.; Bousahla, A. A.; Bourada, M.; Azzaz, A.; Zinata, A.; Tounsi, A., Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory, Wind Struct., 28, 1, 19-30 (2019)
[19] Draoui, A.; Zidour, M.; Tounsi, A.; Adim, B., Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT), J. Nano Res., 57, 117-135 (2019)
[20] Fourn, H.; Atmane, H. A.; Bourada, M.; Bousahla, A. A.; Tounsi, A.; Mahmoud, S. R., A novel four variable refined plate theory for wave propagation in functionally graded material plates, Steel Compos. Struct., 27, 1, 109-122 (2018)
[21] Karami, B.; Shahsavari, D.; Janghorban, M.; Tounsi, A., Resonance behavior of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets, Int. J. Mech. Sci., 156, 94-105 (2019)
[22] Meksi, R.; Benyoucef, S.; Mahmoudi, A.; Tounsi, A.; Adda Bedia, E. A.; Mahmoud, S. R., An analytical solution for bending, buckling and vibration responses of fgm sandwich plates, J. Sandw. Struct. Mater., 21, 2, 727-757 (2019)
[23] Younsi, A.; Tounsi, A.; Zaoui, F. Z., Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates, Geomech. Eng., 14, 6, 519-532 (2018)
[24] Che, M.; Li, G.; Qi, L.; Wei, Y., Pseudo-spectra theory of tensors and tensor polynomial eigenvalue problems, Linear Algebra Appl., 533, 536-572 (2017) · Zbl 1371.15010
[25] L.H. Lim, Spectrum and pseudospectrum of a tensor, Talk, University of California, Berkely, 2008.
[26] Geršgorin, S., Über die Abgrenzung der Eigenwerte einer matrix, Izv. Akad. Nauk SSSR Ser. Mat., 1, 749-754 (1931) · Zbl 0003.00102
[27] Bu, C.; Jin, X.; Li, H.; Deng, C., Brauer-type eigenvalue inclusion sets and the spectral radius of tensors, Linear Algebra Appl., 512, 234-248 (2017) · Zbl 1353.15017
[28] Li, C. Q.; Li, Y. T.; Kong, X., New eigenvalue inclusion sets for tensors, Numer. Linear Algebra Appl., 21, 39-50 (2014) · Zbl 1324.15026
[29] Li, C. Q.; Li, Y. T., An eigenvalue localization set for tensors with applications to determine the positive (semi-) definiteness of tensors, Linear Multilinear Algebra, 64, 4, 587-601 (2016) · Zbl 1381.15016
[30] Li, C. Q.; Jiao, A. Q.; Li, Y. T., An \(S\)-type eigenvalue localization set for tensors, Linear Algebra Appl., 493, 469-483 (2016) · Zbl 1329.15029
[31] Bu, C.; Wei, Y.-P.; Sun, L.; Zhou, J., Brualdi-type eigenvalue inclusion sets of tensors, Linear Algebr. Appl., 480, 168-175 (2015) · Zbl 1320.15019
[32] Varga, R. S., Geršgorin and his Circles (2004), Springer Verlag: Springer Verlag Berlin · Zbl 1057.15023
[33] Brauer, A., Limits for the characteristic roots of a matrix II, Duke Math. J., 14, 21-26 (1947) · Zbl 0029.33701
[34] Brualdi, R., Matrices, eigenvalues and directed graphs, Linear Multilinear Algebr., 11, 143-165 (1982) · Zbl 0484.15007
[35] Bose, N. K.; Kamat, P. S., Algorithm for stability test of multidimensional filters, IEEE Trans. Acoust. Speech Signal Process., ASSP20, 169-175 (1975)
[36] Bose, N. K.; Modaress, A. R., General procedure for multivariable polynomial positivity with control applications, IEEE Trans. Automat. Control, AC21, 596-601 (1976)
[37] Fu, M., Comments on ‘a procedure for the positive definiteness of forms of even-order’, IEEE Trans. Automat. Control, 43, 1430 (1998) · Zbl 1056.93534
[38] Hasan, M. A.; Hasan, A. A., A procedure for the positive definiteness of forms of even-order, IEEE Trans. Automat. Control, AC41, 615-617 (1996) · Zbl 0856.93039
[39] Ku, W., Explicit criterion for the positive definiteness of a general quartic form, IEEE Trans. Automat. Control, 10, 3, 372-373 (1965)
[40] Li, C. Q.; Wang, F.; Zhao, J. X.; Zhu, Y.; Li, Y. T., Criterions for the positive definiteness of real supersymmetric tensors, J. Comput. Appl. Math., 255, 1-14 (2014) · Zbl 1291.15065
[41] Wang, F.; Qi, L., Comments on ‘explicit criterion for the positive definiteness of a general quartic form’, IEEE Trans. Automat. Control, 50, 416-418 (2005) · Zbl 1365.13048
[42] Huang, Z.-H.; Qi, L. Q., Formulating an \(n\)-person noncooperative game as a tensor complementarity problem, Comput. Optim. Appl., 66, 557-576 (2017) · Zbl 1393.90120
[43] Luo, Z.; Qi, L.; Xiu, N., The sparsest solutions to \(Z\)-tensor complementarity problems, Optim. Lett., 11, 471-482 (2017) · Zbl 1394.90540
[44] Che, M.; Qi, L.; Wei, Y., Positive-definite tensors to nonlinear complementarity problems, J. Optim. Theory Appl., 168, 2, 475-487 (2016) · Zbl 1334.90174
[45] Chen, H. B.; Qi, L.; Song, Y., Column sufficient tensors and tensor complementarity problems, Front. Math. China, 13, 2, 255-276 (2018) · Zbl 1418.90253
[46] Ding, W.; Luo, Z.; Qi, L., \(P\)-Tensors, \(P_0\)-tensors, and their applications, Linear Algebra Appl., 555, 336-354 (2018) · Zbl 1396.15020
[47] Z.-H. Huang, L.Q. Qi, Tensor complementarity problems-part III: applications, J. Optim. Theory Appl., http://dx.doi.org/10.1007/s10957-019-01573-0. · Zbl 1433.90169
[48] Ling, L.; He, H.; Ling, C., On error bounds of polynomial complementarity problems with structured tensors, Optimization, 67, 2, 341-358 (2018) · Zbl 1427.90275
[49] Qi, L. Q.; Huang, Z.-H., Tensor complementarity problems-part II: solution methods, J. Optim. Theory Appl., 183, 365-385 (2019) · Zbl 1429.90082
[50] Song, Y.; Qi, L. Q., Properties of tensor complementarity problem and some classes of structured tensors, Ann. Appl. Math., 33, 308-323 (2017) · Zbl 1399.15036
[51] Song, Y.; Yu, G., Properties of solution set of tensor complementarity problem, J. Optim. Theory Appl., 170, 1, 85-96 (2016) · Zbl 1351.90156
[52] Song, Y.; Qi, L. Q., Strictly semi-positive tensors and the boundedness of tensor complementarity problems, Optim. Lett., 11, 7, 1407-1426 (2017) · Zbl 1454.90098
[53] Song, Y.; Mei, W., Structural properties of tensors and complementarity problems, J. Optim. Theory Appl., 176, 289-305 (2018) · Zbl 06859628
[54] Song, Y.; Qi, L. Q., Tensor complementarity problem and semi-positive tensors, J. Optim. Theory Appl., 169, 3, 1069-1078 (2016) · Zbl 1349.90803
[55] X. Wang, M. Che, Y. Wei, Global uniqueness and solvability of tensor complementarity problems for \(H_+\)-tensors, Numer. Algorithms, http://dx.doi.org/10.1007/s11075-019-00769-9.
[56] Yu, W.; Ling, C.; He, H., On the properties of tensor complementarity problems, Pac. J. Optim., 14, 4, 675-691 (2018)
[57] Zheng, Y. N.; Wu, W., On a class of semi-positive tensors in tensor complementarity problem, J. Optim. Theory Appl., 177, 127-136 (2018) · Zbl 1388.15023
[58] Cottle, R. W.; Pang, J.-S.; Stone, R. E., The Linear Complementarity Problem (1992), Academic Press: Academic Press Boston · Zbl 0757.90078
[59] Huang, Z.-H.; Qi, L. Q., Tensor complementarity problems-part I: basic theory, J. Optim. Theory Appl., 183, 1-23 (2019) · Zbl 1434.90203
[60] Liu, D. D.; Li, W.; Vong, S. W., Tensor complementarity problems: the GUS-property and an algorithm, Linear Multilinear Algebr., 66, 9, 1726-1749 (2018) · Zbl 06916832
[61] Song, Y.; Qi, L. Q., Properties of some classes of structured tensors, J. Optim. Theory Appl., 165, 854-873 (2015) · Zbl 1390.15085
[62] Bai, X. L.; Huang, Z. H.; Wang, Y., Global uniqueness and solvability for tensor complementarity problems, J. Optim. Theory Appl., 170, 72-84 (2016) · Zbl 1344.90056
[63] Balaji, R.; Palpandi, K., Positive definite and Gram tensor complementarity problems, Optim. Lett., 12, 639-648 (2018) · Zbl 1417.90137
[64] Qi, L. Q.; Chen, H. B.; Chen, Y. N., Tensor Eigenvalues and Their Applications (2018), Springer: Springer Berlin
[65] Motzkin, T. S., Copositive quadratic forms, 11-12 (1952)
[66] Qi, L. Q., Symmetric nonnegative tensors and copositive tensors, Linear Algebra Appl., 439, 228-238 (2013) · Zbl 1281.15025
[67] Song, Y.; Qi, L. Q., Eigenvalue analysis of constrained minimization problem for homogeneous polynomials, J. Global Optim., 64, 563-575 (2016) · Zbl 1341.15009
[68] Chen, H. B.; Huang, Z. H.; Qi, L. Q., Copositive tensor detection and its applications in physics and hypergraphs, Comput. Optim. Appl., 69, 1, 133-158 (2018) · Zbl 1383.65061
[69] Kannike, K., Vacuum stability of a general scalar potential of a few fields, Eur. Phys. J. C, 76, 324 (2016)
[70] Chen, H. B.; Huang, Z. H.; Qi, L. Q., Copositivity detection of tensors: theory and algorithm, J. Optim. Theory Appl., 174, 3, 746-761 (2017) · Zbl 1377.65060
[71] Song, Y.; Qi, L. Q., Necessary and sufficient conditions for copositive tensors, Linear Multilinear Algebra, 63, 1, 120-131 (2015) · Zbl 1311.15026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.