zbMATH — the first resource for mathematics

Event-triggered cooperative unscented Kalman filtering and its application in multi-UAV systems. (English) Zbl 1429.93390
Summary: This paper proposes a novel consensus-based distributed unscented Kalman filtering algorithm with event-triggered communication mechanisms. With such an algorithm, each sensor node transmits the newest measurement to the corresponding remote estimator selectively on the basis of its own event-triggering condition. Compared to the existing approaches, the proposed algorithm can significantly reduce unnecessary data transmissions and hence save communication energy consumption and alleviate the communication burden. A sufficient condition is provided to guarantee the stochastic stability of the distributed nonlinear filtering scheme. The proposed algorithm is applicable to a wide range of distributed estimation tasks, e.g., tracking a moving target with multiple unmanned aerial vehicles (UAVs). Simulation results demonstrate the feasibility and effectiveness of the proposed filtering algorithm.

93E11 Filtering in stochastic control theory
93E15 Stochastic stability in control theory
93C65 Discrete event control/observation systems
93D50 Consensus
93C85 Automated systems (robots, etc.) in control theory
Full Text: DOI
[1] Battistelli, G.; Chisci, L., Kullback-Leibler average, consensus on probability densities, and distributed state estimation with guaranteed stability, Automatica, 50, 3, 707-718 (2014) · Zbl 1298.93311
[2] Battistelli, G.; Chisci, L., Stability of consensus extended Kalman filter for distributed state estimation, Automatica, 68, 169-178 (2016) · Zbl 1334.93176
[3] Battistelli, G.; Chisci, L.; Mugnai, G.; Farina, A., Consensus-based linear and nonlinear filtering, IEEE Transactions on Automatic Control, 60, 5, 1410-1415 (2014) · Zbl 1360.93687
[4] Calafiore, G. C.; Abrate, F., Distributed linear estimation over sensor networks, International Journal of Control, 82, 5, 868-882 (2009) · Zbl 1165.93032
[5] Campbell, M. E.; Whitacre, W. W., Cooperative tracking using vision measurements on seascan UAVs, IEEE Transactions on Control Systems Technology, 15, 4, 613-626 (2007)
[6] Crassidis, J. L.; Junkins, J. L., Optimal estimation of dynamic systems (2004), Chapman & Hall/CRC · Zbl 1072.93001
[7] Dimarogonas, D. V.; Frazzoli, E.; Johansson, K. H., Distributed event-triggered control for multi-agent systems, IEEE Transactions on Automatic Control, 57, 5, 1291-1297 (2012) · Zbl 1369.93019
[8] Hausman, K.; Mueller, J.; Hariharan, A., Cooperative multi-robot control for target tracking with onboard sensing, International Journal of Robotics Research, 34, 13, 1660-1677 (2015)
[9] Hu, J.; Wang, Z.; Gao, H.; Stergioulas, L. K., Extended Kalman filtering with stochastic nonlinearities and multiple missing measurements, Automatica, 48, 9, 2007-2015 (2012) · Zbl 1257.93099
[10] Ji, H.; Lewis, F. L.; Hou, Z.; Mikulski, D., Distributed information-weighted Kalman consensus filter for sensor networks, Automatica, 77, 18-30 (2017) · Zbl 1355.93185
[11] Julier, S. J.; Uhlmann, J. K., Unscented filtering and nonlinear estimation, Proceedings of the IEEE, 92, 3, 401-422 (2004)
[12] Kamal, A. T.; Farrell, J. A.; Roy-Chowdhury, A. K., Information weighted consensus filters and their application in distributed camera networks, IEEE Transactions on Automatic Control, 58, 12, 3112-3125 (2013) · Zbl 1369.93628
[13] Kluge, S.; Reif, K.; Brokate, M., Stochastic stability of the extended Kalman filter with intermittent observations, IEEE Transactions on Automatic Control, 55, 2, 514-518 (2010) · Zbl 1368.93717
[14] Lee, D. J., Nonlinear estimation and multiple sensor fusion using unscented information filtering, IEEE Signal Processing Letters, 15, 861-864 (2008)
[15] Li, W.; Jia, Y., Consensus-based distributed multiple model UKF for jump Markov nonlinear systems, IEEE Transactions on Automatic Control, 57, 1, 227-233 (2012) · Zbl 1369.93637
[16] Li, W.; Jia, Y.; Du, J., Distributed consensus extended Kalman filter: a variance-constrained approach, IET Control Theory and Applications, 11, 3, 382-389 (2016)
[17] Li, W.; Jia, Y.; Du, J., Event-triggered Kalman consensus filter over sensor networks, IET Control Theory and Applications, 10, 1, 103-110 (2016)
[18] Li, W.; Jia, Y.; Du, J., Variance-constrained state estimation for nonlinearly coupled complex networks, IEEE Transactions on Cybernetics, 48, 2, 818-824 (2018)
[19] Li, W.; Wei, G.; Han, F., Consensus-based unscented Kalman filter for sensor networks with sensor saturations, (Intel. Conf. Mech. Control (2015)), 1220-1225
[20] Li, W.; Wei, G.; Han, F.; Liu, Y., Weighted average consensus-based unscented Kalman filtering, IEEE Transactions on Cybernetics, 46, 2, 558-567 (2016)
[21] Li, L.; Xia, Y., Stochastic stability of the unscented Kalman filter with intermittent observations, Automatica, 48, 5, 978-981 (2012) · Zbl 1246.93121
[22] Li, L.; Yu, D.; Xia, Y.; Yang, H., Event-triggered UKF for nonlinear dynamic systems with packet dropout, International Journal of Robust and Nonlinear Control, 27, 18, 4208-4226 (2017) · Zbl 1379.93092
[23] Liu, Q.; Wang, Z.; He, X.; Zhou, D. H., Event-based recursive distributed filtering over wireless sensor networks, IEEE Transactions on Automatic Control, 60, 9, 2470-2475 (2015) · Zbl 1360.93703
[24] Ma, L.; Hovakimyan, N., Cooperative target tracking in balanced circular formation: multiple UAVs tracking a ground vehicle, (Proc. Amer. Control Conf. (2013)), 5386-5391
[25] Matei, I.; Baras, J. S., Consensus-based linear distributed filtering, Automatica, 48, 8, 1776-1782 (2012) · Zbl 1267.93171
[26] Miskowicz, M., Send-on-delta concept: an event-based data reporting strategy, Sensors, 6, 1, 49-63 (2006)
[27] Morbidi, F.; Mariottini, G. L., Active target tracking and cooperative localization for teams of aerial vehicles, IEEE Transactions on Control Systems Technology, 21, 5, 1694-1707 (2013)
[30] Reif, K.; Gunther, S.; Yaz, E.; Unbehauen, R., Stochastic stability of the discrete-time extended Kalman filter, IEEE Transactions on Automatic Control, 44, 4, 714-728 (1999) · Zbl 0967.93090
[31] Ren, W.; Beard, R. W.; Atkins, E. M., Information consensus in multivehicle cooperative control, IEEE Control Systems, 27, 2, 71-82 (2007)
[32] Shen, B.; Wang, Z.; Hung, Y. S., Distributed H∞-consensus filtering in sensor networks with multiple missing measurements: the finite-horizon case, Automatica, 46, 10, 1682-1688 (2010) · Zbl 1204.93122
[33] Shi, D.; Chen, T.; Shi, L., An event-triggered approach to state estimation with multiple pointand set-valued measurements, Automatica, 50, 6, 1641-1648 (2014) · Zbl 1296.93187
[36] Wu, J.; Jia, Q.; Johansson, K. H.; Shi, L., Event-based sensor data scheduling: trade-off between communication rate and estimation quality, IEEE Transactions on Automatic Control, 58, 4, 1041-1046 (2013) · Zbl 1369.90086
[38] Xiong, K.; Zhang, H.; Chan, C., Performance evaluation of UKF-based nonlinear filtering, Automatica, 42, 2, 261-270 (2006) · Zbl 1103.93045
[40] Zhan, P.; Casbeer, D. W.; Swindlehurst, A. L., Adaptive mobile sensor positioning for multi-static target tracking, IEEE Transactions on Aerospace and Electronic Systems, 46, 1, 120-132 (2010)
[41] Zhang, C.; Jia, Y., Distributed Kalman consensus filter with event-triggered communication: formulation and stability analysis, Journal of the Franklin Institute, 354, 5486-5502 (2017) · Zbl 1395.93556
[42] Zhang, J.; Kuai, Y.; Ren, M.; Luo, Z.; Lin, M., Event-triggered distributed filtering for non-Gaussian systems over wireless sensor networks using survival information potential criterion, IET Control Theory and Applications, 10, 13, 1524-1530 (2016)
[43] Zheng, X.; Fang, H., Recursive state estimation for discrete-time nonlinear systems with event-triggered data transmission, norm-bounded uncertainties and multiple missing measurements, International Journal of Robust and Nonlinear Control, 26, 17, 3673-3695 (2016) · Zbl 1351.93150
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.