×

Fully parametric identification for continuous time fractional order Hammerstein systems. (English) Zbl 1429.93069

Summary: This paper mainly investigates the issue of parameters identification for continuous time fractional order Hammerstein systems. When the commensurate order of linear part in system is prior information, two estimation algorithms are proposed to identify the parameters. Both methods use filters to obtain the derivative of the continuous time signal: one based on the Poisson filter and the other using the auxiliary model to construct the filter. Afterwards, the commensurate order update law is given, which contains the relationship between parameters and orders. In addition, due to the existence of fractional order terms, an irrational item will be introduced, and this paper gives a detailed mathematical derivation to discuss this issue. The effectiveness of proposed methods is demonstrated by the numerical simulations.

MSC:

93B30 System identification
93E12 Identification in stochastic control theory
93C15 Control/observation systems governed by ordinary differential equations
26A33 Fractional derivatives and integrals
34A08 Fractional ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Giri, F.; Bai, E. W., Block-oriented nonlinear system identification (2010), Springer: Springer London · Zbl 1201.93004
[2] Jurado, F., A method for the identification of solid oxide fuel cells using a Hammerstein model, J. Power Sources, 154, 1, 145-152 (2006)
[3] Smith, J. G.; Kamat, S.; Madhavan, K., Modeling of pH process using wavenet based Hammerstein model, J. Process Control, 17, 6, 551-561 (2007)
[4] Zou, Z. Y.; Liu, G. P.; Guo, N., Predictive control of nonlinear Hammerstein systems and application to pH processes, 2003 European Control Conference (ECC), 3064-3069 (2003), IEEE: IEEE Cambridge, UK
[5] Wang, J. D.; Sano, A.; Chen, T. W.; Huang, B., Identification of Hammerstein systems without explicit parameterisation of non-linearity, Int. J. Control, 82, 5, 937-952 (2009) · Zbl 1165.93306
[6] Mu, B. Q.; Chen, H. F.; Wang, L. Y.; Yin, G.; Zheng, W. X., Recursive identification of Hammerstein systems: convergence rate and asymptotic normality, IEEE Trans. Autom. Control, 62, 7, 3277-3292 (2017) · Zbl 1370.93296
[7] Ding, F.; Liu, X. P.P.; Liu, G. J., Identification methods for Hammerstein nonlinear systems, Digit. Signal Process., 21, 2, 215-238 (2011)
[8] Liu, Y.; Bai, E. W., Iterative identification of Hammerstein systems, Automatica, 43, 2, 346-354 (2007) · Zbl 1111.93013
[9] Zou, C. F.; Zhang, L.; Hu, X. S.; Wang, Z. P.; Wik, T.; Pecht, M., A review of fractional-order techniques applied to lithium-ion batteries, lead-acid batteries, and supercapacitors, J. Power Sources, 390, 286-296 (2018)
[10] Chen, S. Z.; Liu, F. W.; Turner, I.; Hu, X. L., Numerical inversion of the fractional derivative index and surface thermal flux for an anomalous heat conduction model in a multi-layer medium, Appl. Math. Modell., 59, 514-526 (2018) · Zbl 1480.35389
[11] Victor, S.; Malti, R.; Garnier, H.; Oustaloup, A., Parameter and differentiation order estimation in fractional models, Automatica, 49, 4, 926-935 (2013) · Zbl 1284.93228
[12] Deng, J., Higher-order stochastic averaging for a SDOF fractional viscoelastic system under bounded noise excitation, J. Frankl. Inst., 354, 17, 7917-7945 (2017) · Zbl 1380.93272
[13] Shalaby, R.; Mohammad, E. H.; Belal, A. Z., Fractional order modeling and control for under-actuated inverted pendulum, Commun. Nonlinear Sci. Numer. Simul. (2019) · Zbl 1466.70005
[14] Abuaisha, T.; Kertzscher, J., Fractional-order modelling and parameter identification of electrical coils, Fract. Calc. Appl. Anal., 22, 1, 193-216 (2019) · Zbl 1427.78013
[15] Chen, H. B.; Xiao, Y. S.; Ding, F., Hierarchical gradient parameter estimation algorithm for Hammerstein nonlinear systems using the key term separation principle, Appl. Math. Comput., 247, 1202-1210 (2014) · Zbl 1343.62055
[16] Ding, F.; Chen, H. B.; Xu, L.; Dai, J. Y.; Li, Q. S.; Hayat, T., A hierarchical least squares identification algorithm for Hammerstein nonlinear systems using the key term separation, J. Frankl. Inst., 355, 8, 3737-3752 (2018) · Zbl 1390.93818
[17] Ding, F.; Chen, T. W., Performance analysis of multi-innovation gradient type identification methods, Automatica, 43, 1, 1-14 (2007) · Zbl 1140.93488
[18] Ding, F., Several multi-innovation identification methods, Digit. Signal Process., 20, 4, 1027-1039 (2010)
[19] Ma, P.; Ding, F., New gradient based identification methods for multivariate pseudo-linear systems using the multi-innovation and the data filtering, J. Frankl. Inst., 354, 3, 1568-1583 (2017) · Zbl 1355.93194
[20] Goethals, I.; Pelckmans, K.; Suykens, J. A.; De Moor, B., Subspace identification of Hammerstein systems using least squares support vector machines, IEEE Trans. Autom. Control, 50, 10, 1509-1519 (2005) · Zbl 1365.93522
[21] Ding, F.; Shi, Y.; Chen, T. W., Gradient-based identification methods for Hammerstein nonlinear ARMAX models, Nonlinear Dyn., 45, 1-2, 31-43 (2006) · Zbl 1134.93321
[22] Cheng, S. S.; Wei, Y. H.; Sheng, D.; Chen, Y. Q.; Wang, Y., Identification for Hammerstein nonlinear ARMAX systems based on multi-innovation fractional order stochastic gradient, Signal Process., 142, 1-10 (2018)
[23] Vanbeylen, L.; Pintelon, R.; Schoukens, J., Blind maximum likelihood identification of Hammerstein systems, Automatica, 44, 12, 3139-3146 (2008) · Zbl 1153.93522
[24] Boubaker, S., Identification of nonlinear Hammerstein system using mixed integer-real coded particle swarm optimization: application to the electric daily peak-load forecasting, Nonlinear Dyn., 90, 2, 797-814 (2017)
[25] Fahim, S. M.; Ahmed, S.; Imtiaz, S. A., Fractional order model identification using the sinusoidal input, ISA Trans., 83, 35-41 (2018)
[26] Liu, D. Y.; Laleg-Kirati, T.-M.; Gibaru, O.; Perruquetti, W., Identification of fractional order systems using modulating functions method, American Control Conference, 1679-1684 (2013), IEEE: IEEE Washington, USA
[27] Dai, Y.; Wei, Y. H.; Hu, Y. S.; Wang, Y., Modulating function-based identification for fractional order systems, Neurocomputing, 173, 1959-1966 (2016)
[28] Hu, Y. S.; Fan, Y.; Wei, Y. H.; Wang, Y.; Liang, Q., Subspace-based continuous-time identification of fractional order systems from non-uniformly sampled data, Int. J. Syst. Sci., 47, 1, 122-134 (2016) · Zbl 1333.93084
[29] Cui, R. Z.; Wei, Y. H.; Chen, Y. Q.; Cheng, S. S.; Wang, Y., An innovative parameter estimation for fractional-order systems in the presence of outliers, Nonlinear Dyn., 89, 1, 453-463 (2017) · Zbl 1374.93094
[30] Tang, Y. G.; Liu, H. F.; Wang, W. W.; Lian, Q. S.; Guan, X. P., Parameter identification of fractional order systems using block pulse functions, Signal Process., 107, 272-281 (2015)
[31] Cui, R. Z.; Wei, Y. H.; Cheng, S. S.; Wang, Y., An innovative parameter estimation for fractional order systems with impulse noise, ISA Trans., 82, 120-129 (2018)
[32] Ivanov, D., Identification discrete fractional order Hammerstein systems, International Siberian Conference on Control and Communications, 1-4 (2015), IEEE: IEEE Omsk, Russia
[33] Liao, Z.; Zhu, Z. T.; Liang, S.; Peng, C.; Wang, Y., Subspace identification for fractional order Hammerstein systems based on instrumental variables, Int. J. Control, Autom. Syst., 10, 5, 947-953 (2012)
[34] Rahmani, M.-R.; Farrokhi, M., Identification of neuro-fractional Hammerstein systems: a hybrid frequency-/time-domain approach, Soft Comput., 22, 24, 8097-8106 (2018) · Zbl 1415.93126
[35] Wei, Y. H.; Chen, Y. Q.; Cheng, S. S.; Wang, Y., A note on short memory principle of fractional calculus, Fract. Calc. Appl. Anal., 20, 6, 1382-1404 (2017) · Zbl 1391.26026
[36] Podlubny, I., Fractional Differential Equations: an Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications (1999), Academic Press: Academic Press San Diego · Zbl 0924.34008
[37] Bastogne, T.; Garnier, H.; Sibille, P., A PMF-based subspace method for continuous-time model identification. application to a multivariable winding process, Int. J. Control, 74, 2, 118-132 (2001) · Zbl 1012.93021
[38] Young, P. C.; Garnier, H.; Gilson, M., Identification of Continuous-time Models from Sampled Data (2008), Springer: Springer London
[39] Polyanin, A. D.; Manzhirov, A. V., Handbook of Integral Equations: Second Edition (2008), CRC Press: CRC Press New York · Zbl 1154.45001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.