×

zbMATH — the first resource for mathematics

Onset of transition in the flow of polymer solutions through microtubes. (English) Zbl 1429.76058
Summary: Experiments are performed to characterize the onset of laminar-turbulent transition in the flow of high-molecular-weight polymer solutions in rigid microtubes of diameters in the range \(390\mu\text{m}-470\mu\text{m}\) using the micro-PIV technique. By considering flow in tubes of such small diameters, the present study probes higher values of elasticity numbers \((E\equiv \lambda\nu/R^2)\) compared to existing studies, where \(\lambda\) is the longest relaxation time of the polymer solution, \(R\) is the tube radius and \(\nu\) is the kinematic viscosity of the polymer solution. For the Newtonian case, our experiments indicate that the natural transition (without the aid of any forcing mechanism) occurs at Reynolds number \((Re)2000\pm 100\). As the concentration of polymer is increased, initially there is a delay in the onset of the transition and the transition Reynolds number increases to \(2500\). Further increase in concentration of the polymer results in a decrease in the Reynolds number for transition. At sufficiently high concentrations, the added polymer tends to destabilize the flow and the transition is observed to happen at \(Re\) as low as \(800\). It is also observed that the addition of polymers, regardless of their concentration, reduces the magnitude of the velocity fluctuations after transition. Dye-stream visualization is further used to corroborate the onset of transition in the flow of polymer solutions. The present work thus shows that addition of polymer, at sufficiently high concentrations, destabilizes the flow when compared to that of a Newtonian fluid, thereby providing additional evidence for ‘early transition’ or ‘elasto-inertial turbulence’ in the flow of polymer solutions. The data for the transition Reynolds number \(Re_t\) from our experiments (for tubes of different diameters, and for two different polymers at varying concentrations) collapse well according to the scaling relation \(Re_t\propto 1/\sqrt{E(1-\beta)}\), where \(\beta\) is the ratio of solvent viscosity to the viscosity of the polymer solution.

MSC:
76F06 Transition to turbulence
76A05 Non-Newtonian fluids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Avila, K.; Moxey, D.; Lozar, A.; Avila, M.; Barkley, D.; Hof, B., The onset of turbulence in pipe flow, Science, 333, 192-196, (2011)
[2] Bodiguel, H.; Beaumont, J.; Machado, A.; Martinie, L.; Kellay, H.; Colin, A., Flow enhancement due to elastic turbulence in channel flows of shear thinning fluids, Phys. Rev. Lett., 114, (2015)
[3] Bonn, D.; Ingremeau, F.; Amarouchene, Y.; Kellay, H., Large velocity fluctuations in small-Reynolds-number pipe flow of polymer solutions, Phys. Rev. E, 84, (2011)
[4] Clasen, C.; Plog, J. P.; Kulicke, W.-M.; Owens, M.; Macosko, C.; Scriven, L. E.; Verani, M.; Mckinley, G. H., How dilute are dilute solutions in extensional flows?, J. Rheol., 50, 849-881, (2006)
[5] Dinic, J.; Zhang, Y.; Jimenez, L. N.; Sharma, V., Extensional relaxation times of dilute, aqueous polymer solutions, ACS Macro Lett., 4, 804-808, (2015)
[6] Doi, M.; Edwards, S. F., The Theory of Polymer Dynamics, (1988), Oxford Science Publications
[7] Draad, A. A.; Kuiken, G. D. C.; Nieuwstadt, F. T. M., Laminar – turbulent transition in pipe flow for Newtonian and non-Newtonian fluids, J. Fluid Mech., 377, 267-312, (1998) · Zbl 0941.76528
[8] Drazin, P. G.; Reid, W. H., Hydrodynamic Stability, (1981), Cambridge University Press
[9] Dubief, Y.; Terrapon, V. E.; Soria, J., On the mechanism of elasto-inertial turbulence, Phys. Fluids, 25, 11, (2013)
[10] Ebagninin, K. W.; Benchabane, A.; Bekkour, K., Rheological characterization of poly(ethylene oxide) solutions of different molecular weights, J. Colloid Interface Sci., 336, 360-397, (2009)
[11] Eckhardt, B.; Schneider, T. M.; Hof, B.; Westerweel, J., Turbulence transition in pipe flow, Annu. Rev. Fluid Mech., 39, 1, 447-468, (2007) · Zbl 1296.76062
[12] Escudier, M. P.; Poole, R. J.; Presti, F.; Dales, C.; Nouar, C.; Desaubry, C.; Graham, L.; Pullum, L., Observations of asymmetrical flow behaviour in transitional pipe flow of yield-stress and other shear-thinning liquids, J. Non-Newtonian Fluid Mech., 127, 2, 143-155, (2005)
[13] Fang, L.; Brown, W.; Hvidt, S., Static and dynamic properties of polyacrylamide gels and solutions in mixtures of water and glycerol: a comparison of the application of mean-field and scaling theories, Macromolecules, 25, 3137-3142, (1992)
[14] Forame, P. C.; Hansen, R. J.; Little, R. C., Observations of early turbulence in the pipe flow of drag reducing polymer solutions, AIChE J., 18, 1, 213-217, (1972)
[15] Goldstein, R. J.; Adrian, R. J.; Kreid, D. K., Turbulent and transition pipe flow of dilute aqueous polymer solutions, Ind. Engng Chem. Fundam., 8, 498-502, (1969)
[16] Graham, M. D., Drag reduction and the dynamics of turbulence in simple and complex fluids, Phys. Fluids, 26, (2014)
[17] Groisman, A.; Steinberg, V., Elastic turbulence in a polymer solution flow, Nature, 405, 53-55, (2000)
[18] Hansen, R. J.; Little, R. C., Early turbulence and drag reduction phenomena in larger pipes, Nature, 252, 690, (1974)
[19] Hansen, R. J.; Little, R. C.; Forame, P. G., Experimental and theoretical studies of early turbulence, J. Chem. Engng Japan, 6, 4, 310-314, (1973)
[20] Hof, B.; Lozar, A. D., An experimental study of the decay of turbulent puffs in pipe flow, Phil. Trans. R. Soc. Lond. A, 367, 589-599, (2009) · Zbl 1221.76009
[21] Hoyt, J. W., Laminar – turbulent transition in polymer solutions, Nature, 270, 508-509, (1977)
[22] Jackson, D.; Launder, B., Osborne Reynolds and the publication of his papers on turbulent flow, Annu. Rev. Fluid Mech., 39, 19-35, (2007) · Zbl 1296.76003
[23] Kulicke, W. M.; Kniewske, R.; Klein, J., Preparation, characterization, solution properties and rheological behaviour of polyacrylamide, Prog. Polym. Sci., 8, 373-468, (1982)
[24] Larson, R. G., Instabilities in viscoelastic flows, Rheol. Acta, 31, 213-263, (1992)
[25] Larson, R. G.; Shaqfeh, E. S. G.; Muller, S. J., A purely elastic instability in Taylor-Couette flow, J. Fluid Mech., 218, 573-600, (1990) · Zbl 0706.76011
[26] Little, C. R.; Hansen, R. J.; Hunston, D. L.; Kim, O.; Patterson, R. L.; Ting, R. Y., The drag reduction phenomenon: observed characteristics, improved agents, and proposed mechanisms, Ind. Engng Chem. Fundam., 14, 4, 283-296, (1975)
[27] Mullin, T., Experimental studies of transition to turbulence in a pipe, Annu. Rev. Fluid Mech., 43, 1, 1-24, (2011) · Zbl 1210.76005
[28] Neelamegam, R.; Shankar, V., Experimental study of the instability of laminar flow in a tube with deformable walls, Phys. Fluids, 27, (2015)
[29] Neelamegam, R.; Shankar, V.; Das, D., Suppression of purely elastic instabilities in the torsional flow of viscoelastic fluid past a soft solid, Phys. Fluids, 25, (2013)
[30] Pan, L.; Morozov, A.; Wagner, C.; Arratia, P. E., Nonlinear elastic instability in channel flows at low Reynolds numbers, Phys. Rev. Lett., 110, (2013)
[31] Patel, V. C.; Head, M. R., Some observations on skin friction and velocity profiles in fully developed pipe and channel flows, J. Fluid Mech., 38, 181-201, (1969)
[32] Pfenninger, W.1961Boundary layer suction experiments with laminar flow at high Reynolds numbers in the inlet length of a tube by various suction methods. In Boundary Layer and Flow Control (ed. Lachmann, G. V.), pp. 961-980. Pergamon. doi:10.1016/B978-1-4832-1323-1.50013-0
[33] Pinho, F. T.; Whitelaw, J. H., Flow of non-Newtonian fluids in a pipe, J. Non-Newtonian Fluid Mech., 34, 129-144, (1990)
[34] Poole, R. J., The Deborah and Weissenberg numbers, Brit. Soc. Rheol., 53, 32-39, (2012)
[35] Poole, R. J., Elastic instabilities in parallel shear flows of a viscoelastic shear-thinning liquid, Phys. Rev. Fluids, 1, (2016)
[36] Reynolds, O., An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels, Proc. R. Soc. Lond., 35, 84-99, (1883) · JFM 16.0845.02
[37] Samanta, D.; Dubief, Y.; Holzner, M.; Schäfer, C.; Morozov, A. N.; Wagner, C.; Hof, B., Elasto-inertial turbulence, Proc. Natl Acad. Sci. USA, 110, 10557-10562, (2013)
[38] Schiamberg, B. A.; Shereda, L. T.; Hu, H.; Larson, R. G., Transitional pathway to elastic turbulence in torsional, parallel-plate flow of a polymer solution, J. Fluid Mech., 554, 191-216, (2006) · Zbl 1156.76335
[39] Schmid, P. J.; Henningson, D. S., Stability and Transition in Shear Flows, (2001), Springer · Zbl 0966.76003
[40] Shaqfeh, E. S. G., Purely elastic instabilities in viscometric flows, Annu. Rev. Fluid Mech., 28, 129-185, (1996)
[41] Sharp, K. V.; Adrian, R. J., Transition from laminar to turbulent flow in liquid filled microtubes, Exp. Fluids, 36, 741-747, (2004)
[42] Sid, S.; Terrapon, V. E.; Dubief, Y., Two-dimensional dynamics of elasto-inertial turbulence and its role in polymer drag reduction, Phys. Rev. F, 3, (2018)
[43] Srinivas, S. S.; Kumaran, V., After transition in a soft-walled microchannel, J. Fluid Mech., 780, 649-686, (2015)
[44] Srinivas, S. S.; Kumaran, V., Effect of viscoelasticity on the soft-wall transition and turbulence in a microchannel, J. Fluid Mech., 812, 1076-1118, (2017) · Zbl 1383.76193
[45] Terrapon, V. E.; Dubief, Y.; Soria, J., On the role of pressure in elasto-inertial turbulence, J. Turbul., 16, 1, 26-43, (2013)
[46] Toms, B.1949Observation on the flow of linear polymer solutions through straight tubes at large Reynolds numbers. In Proceedings of the 1st International Congress on Rheology (ed. Burgers, J. M.), vol. 2, pp. 135-141. North-Holland.
[47] Verma, M. K. S.; Kumaran, V., A dynamical instability due to fluid wall coupling lowers the transition Reynolds number in the flow through a flexible tube, J. Fluid Mech., 705, 322-347, (2012) · Zbl 1250.76200
[48] Virk, P. S., Drag reduction fundamentals, AIChE J., 21, 625-656, (1975)
[49] Virk, P. S.; Merril, E. W.; Mickly, H. S.; Smith, K. A.; Christensen, E., The Toms phenomenon: turbulent pipe flow of dilute polymer solutions, J. Fluid Mech., 30, 305-328, (1967)
[50] Wen, C.; Poole, R. J.; Willis, A. P.; Dennis, D. J. C., Experimental evidence of symmetry-breaking supercritical transition in pipe flow of shear-thinning fluids, Phys. Rev. Fluids, 2, (2017)
[51] White, M. C.; Mungal, M. G., Mechanics and prediction of turbulent drag reduction with polymer additives, Annu. Rev. Fluid Mech., 40, 235-256, (2008) · Zbl 1229.76043
[52] Zakin, J. L.; Ni, C. C.; Hansen, R. J.; Reischman, M. M., Laser Doppler velocimetry studies of early turbulence, Phys. Fluids, 20, 10, S85-S88, (1977)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.