×

Description of sup- and inf-preserving aggregation functions via families of clusters in data tables. (English) Zbl 1429.68274

Summary: Connection between the theory of aggregation functions and formal concept analysis is discussed and studied, thus filling a gap in the literature by building a bridge between these two theories, one of them living in the world of data fusion, the second one in the area of data mining. We show how Galois connections can be used to describe an important class of aggregation functions preserving suprema, and, by duality, to describe aggregation functions preserving infima. Our discovered method gives an elegant and complete description of these classes. Also possible applications of our results within certain biclustering fuzzy FCA-based methods are discussed.

MSC:

68T30 Knowledge representation
06A15 Galois correspondences, closure operators (in relation to ordered sets)
06B99 Lattices
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Alcalde, C.; Burusco, A.; Bustince, H.; Jurio, A.; Sanz, J. A., Evolution in time of L-fuzzy context sequences, Inf. Sci. (Ny), 326, 202-214 (2016) · Zbl 1390.68617
[2] Antoni, L.; Krajči, S.; Krídlo, O.; Macek, B.; Pisková, L., On heterogeneous formal contexts, Fuzzy Sets Syst., 234, 22-33 (2014) · Zbl 1315.68232
[3] Beliakov, G.; Pradera, A.; Calvo, T., Aggregation functions: a guide for practitioners, Studies in Fuzziness and Soft Computing, vol. 221 (2007), Springer · Zbl 1123.68124
[4] Beliakov, G.; Bustince, H.; James, S.; Calvo, T.; Fernandez, J., Aggregation for atanassov intuitionistic and interval valued fuzzy sets: the median operator, IEEE Trans. Fuzzy Syst., 20, 3, 487-498 (2012)
[5] Bělohlávek, R., Lattices of fixed points of fuzzy galois connections, Math. Log. Quart., 47, 1, 111-116 (2001) · Zbl 0976.03025
[6] Blyth, T. S., Lattices and Ordered Algebraic Structures (2005), Springer-Verlag: Springer-Verlag London · Zbl 1073.06001
[7] Bustince, H.; Madrid, N.; Ojeda-Aciego, M., The notion of weak-contradiction: definition and measures, IEEE Trans. Fuzzy Syst., 23, 4, 1057-1069 (2015)
[8] Butka, P.; Pócs, J.; Pócsová, J., On equivalence of conceptual scaling and generalized one-sided concept lattices, Inf. Sci., 259, 57-70 (2014) · Zbl 1328.68217
[9] Couceiro, M.; Marichal, J. L., Characterizations of discrete sugeno integrals as polynomial functions over distributive lattices, Fuzzy Sets Syst., 161, 694-707 (2010) · Zbl 1183.28031
[10] Cornejo, M. E.; Medina, J.; Ramírez-Poussa, E., On the use of irreducible elements for reducing multi-adjoint concept lattices, Knowl. Based. Syst., 89, 192-202 (2015)
[11] De Baets, B.; Mesiar, R., Triangular norms on product lattices, Fuzzy Sets Syst., 104, 1, 61-75 (1999) · Zbl 0935.03060
[12] Erné, M.; Koslowski, J.; Melton, A.; Strecker, G. E., A primer on galois connections, Ann. N. Y. Acad. Sci., 704, 103-125 (1993) · Zbl 0809.06006
[13] Ertuğrul, U.; Kesicioğlu, M. N.; Karaçal, F., Ordering based on uninorms, Inf. Sci., 330, 315-327 (2016) · Zbl 1390.06004
[14] Ganter, B.; Wille, R., Formal concept analysis, Mathematical Foundations (1999), Springer: Springer Berlin
[15] Georgescu, G.; Popescu, A., Non-dual fuzzy connections, Arch. Math. Logic, 43, 1009-1039 (2004) · Zbl 1060.03042
[16] Grabisch, M.; Marichal, J. L.; Mesiar, R.; Pap, E., Aggregation Functions (2009), Cambridge University Press: Cambridge University Press Cambridge
[17] Grätzer, G., Lattice Theory: Foundations (2011), Birkhäuser: Birkhäuser Basel
[18] Hájek, P., Metamathematics of Fuzzy Logic (1998), Kluwer: Kluwer Dordrecht · Zbl 0937.03030
[19] Halaš, R.; Mesiar, R.; Pócs, J., A new characterization of the discrete sugeno integral, Inf. Fusion, 29, 84-86 (2016)
[20] Halaš, R.; Mesiar, R.; Pócs, J., Congruences and the discrete sugeno integrals on bounded distributive lattices, Inf. Sci., 367-368, 443-448 (2016)
[21] Halaš, R.; Mesiar, R.; Pócs, J., Generators of aggregation functions and fuzzy connectives, IEEE Trans. Fuzzy Syst., 24, 6, 1690-1694 (2016)
[22] Halaš, R.; Pócs, J., On the clone of aggregation functions on bounded lattices, Inf. Sci., 329, 381-389 (2016) · Zbl 1390.06006
[23] Halaš, R.; Pócs, J., On lattices with a smallest set of aggregation functions, Inf. Sci., 325, 316-323 (2015) · Zbl 1387.06006
[24] Halaš, R.; Pócs, J., Generalized one-sided concept lattices with attribute preferences, Inf. Sci., 303, 50-60 (2015) · Zbl 1360.68808
[25] Hernandez, P.; Cubillo, S.; Torres-Blanc, C., On t-norms for type-2 fuzzy sets, IEEE Trans. Fuzzy Syst., 23, 4, 1155-1163 (2015)
[26] Ignatov, D. I.; Kuznetsov, S. O.; Poelmans, J., Concept-based biclustering for internet advertisement, proceedings - 12th IEEE international conference on data mining workshops, ICDMW, 2012, 123-130 (2012)
[27] Karaçal, F.; Khadjiev, D., Internal direct product of integral ∨-distributive binary aggregation functions and the classification of all integral ∨-distributive binary aggregation functions of length 3, Inf. Sci., 298, 22-35 (2015) · Zbl 1360.68373
[28] Kardoš, F.; Pócs, J.; Pócsová, J., On concept reduction based on some graph properties, Knowl. Based. Syst., 93, 67-74 (2016)
[29] Klement, E. P.; Mesiar, R.; Pap, E., Triangular Norms, Vol. 8 of Trends in Logic-Studia Logica Library (2000), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht
[30] Krajči, S., A generalized concept lattice, Logic J. IGPL, 13, 5, 543-550 (2005) · Zbl 1088.06005
[31] Lei, Q.; Xu, Z.; Bustince, H.; Fernandez, J., Intuitionistic fuzzy integrals based on archimedean t-conorms and t-norms, Inf. Sci., 327, 57-70 (2016) · Zbl 1390.68664
[32] Medina, J.; Ojeda-Aciego, M., Multi-adjoint t-concept lattices, Inf. Sci., 180, 5, 712-725 (2010) · Zbl 1187.68587
[33] Medina, J.; Ojeda-Aciego, M., On multi-adjoint concept lattices based on heterogeneous conjunctors, Fuzzy Sets Syst., 208, 95-110 (2012) · Zbl 1252.06003
[34] Medina, J.; Ojeda-Aciego, M., Dual multi-adjoint concept lattices, Inf. Sci., 225, 47-54 (2013) · Zbl 1293.06001
[35] Medina, J.; Ojeda-Aciego, M.; Ruiz-Calviño, J., Formal concept analysis via multi-adjoint concept lattices, Fuzzy Sets Syst., 160, 130-144 (2009) · Zbl 1187.68589
[36] Mesiar, R.; Stupňanová, A.; Yager, R., Generalizations of OWA operators, IEEE Trans. Fuzzy Syst., 23, 6, 2154-2162 (2015)
[37] Mesiar, R.; Yager, R., On the transformation of fuzzy measures to the power set and its role in determining the measure of a measure, IEEE Trans. Fuzzy Syst., 23, 4, 842-849 (2015)
[38] Mesiarová-Zemánková, A., Multi-polar t-conorms and uninorms, Inf. Sci., 301, 227-240 (2015) · Zbl 1360.68374
[39] Mesiarová-Zemánková, A., Continuous additive generators of continuous, conditionally cancellative triangular subnorms, Inf. Sci., 339, 53-63 (2016)
[40] Mesiarová-Zemánková, A.; Hyčko, M., Aggregation on boolean multi-polar space: knowledge-based vs. category-based ordering, Inf. Sci., 309, 163-179 (2015) · Zbl 1385.68049
[41] Pócs, J., Note on generating fuzzy concept lattices via galois connections, Inf. Sci., 185, 1, 128-136 (2012) · Zbl 1239.68071
[42] Pócsová, J., Note on formal contexts of generalized one-sided concept lattices, Ann. Math. Inf., 42, 71-82 (2013) · Zbl 1299.06008
[43] Shi, Y.; Tian, Y.; Kou, G.; Peng, Y.; Li, J., Optimization based data mining: theory and applications, Advanced Information and Knowledge Processing (2011), Springer
[44] Sugeno, M., Theory of Fuzzy Integrals and Its Applications (1974), Ph.d. thesis. Tokyo Institute of Technology: Ph.d. thesis. Tokyo Institute of Technology Tokyo
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.