×

zbMATH — the first resource for mathematics

Model-robust and model-sensitive designs. (English) Zbl 1429.62339
Summary: The main drawback of the optimal design approach is that it assumes the statistical model is known. To overcome this problem, a new approach to reduce the dependency on the assumed model is proposed. The approach takes into account the model uncertainty by incorporating the bias in the design criterion and the ability to test for lack-of-fit. Several new designs are derived and compared to the alternatives available from the literature.

MSC:
62K05 Optimal statistical designs
62J05 Linear regression; mixed models
62F35 Robustness and adaptive procedures (parametric inference)
PDF BibTeX Cite
Full Text: DOI
References:
[1] Atkinson, A.C., Planning experiments to detect inadequate regression models, Biometrika, 59, 275-293, (1972) · Zbl 0243.62046
[2] Atkinson, A.C.; Cox, D.R., Planning experiments for discriminating between models, J. roy. statist. soc. B, 36, 321-348, (1974) · Zbl 0291.62095
[3] Atkinson, A.C.; Donev, A.N., The construction of exact D-optimum experimental designs with application to blocking response surface designs, Biometrika, 76, 515-526, (1989) · Zbl 0677.62066
[4] Atkinson, A.C.; Donev, A.N., Optimum experimental designs, (1992), Clarendon Press Oxford · Zbl 0829.62070
[5] Atkinson, A.C.; Fedorov, V.V., The design of experiments for discriminating between two rival models, Biometrika, 62, 57-70, (1975) · Zbl 0308.62071
[6] Atkinson, A.C.; Fedorov, V.V., Optimal designexperiments for discriminating between several models, Biometrika, 62, 289-303, (1975) · Zbl 0321.62085
[7] Box, G.E.P.; Draper, N., A basis for the selection of a response surface design, J. amer. statist. assoc., 54, 622-653, (1959) · Zbl 0116.36804
[8] Chang, Y.-J.; Notz, W.I., Model robust designs, (), 1055-1098 · Zbl 0911.62065
[9] DeFeo, P.; Myers, R.H., A new look at experimental design robustness, Biometrika, 79, 2, 375-380, (1992) · Zbl 0775.62216
[10] Dette, H., A generalization of D- and \(\operatorname{D}_1\)-optimal designs in polynomial regression, Ann. statist., 18, 4, 1784-1804, (1990) · Zbl 0714.62068
[11] Dette, H., A note on robust designs for polynomial regression, J. statist. plann. inference, 28, 223-232, (1991) · Zbl 0728.62072
[12] Dette, H., Experimental designs for a class of weighted polynomial regression models, Comput. statist. data anal., 14, 359-373, (1992) · Zbl 0937.62626
[13] Dette, H., Bayesian D-optimal and model robust designs in linear regression models, Statistics, 25, 27-46, (1993) · Zbl 0816.62054
[14] Dette, H., Robust designs for multivariate polynomial regression on the d-cube, J. statist. plann. inference, 38, 105-124, (1994) · Zbl 0815.62049
[15] Dette, H., Optimal designs for identifying the degree of a polynomial regression, Ann. statist., 23, 4, 1248-1266, (1995) · Zbl 0847.62064
[16] Dette, H.; Studden, W.J., Optimal designs for polynomial regression when the degree is not known, Statist. sinica, 5, 459-473, (1995) · Zbl 0828.62063
[17] Dette, H.; Heiligers, B.; Studden, W.J., Minimax designs in linear regression models, Ann. statist., 23, 1, 30-40, (1995) · Zbl 0847.62063
[18] DuMouchel, W.; Jones, B., A simple Bayesian modification of D-optimal designs to reduce dependence on an assumed model, Technometrics, 36, 37-47, (1994) · Zbl 0800.62472
[19] Fang, Z.; Wiens, D.P., Robust regression designs for approximate polynomial models, J. statist. plann. inference, 117, 305-321, (2003) · Zbl 1021.62058
[20] Fedorov, V.V., Theory of optimal experiments, (1972), Academic Press New York
[21] Goos, P., Kobilinsky, A., O’Brien, T.E., Vandebroek, M., 2002. Model-robust and model-sensitive designs. Research report 0259, Department of Applied Economics, Katholieke Universiteit Leuven. · Zbl 1429.62339
[22] Heo, G.; Schmuland, B.; Wiens, D.P., Restricted minimax robust designs for misspecified regression models, Canad. J. statist., 29, 1, 117-128, (2001) · Zbl 1013.62078
[23] Huber, P., Robustness and designs, (), 287-303
[24] Jones, E.R.; Mitchell, T.J., Design criteria for detecting model inadequacy, Biometrika, 65, 3, 541-551, (1978) · Zbl 0393.62029
[25] Kobilinsky, A., 1998. Robustesse d’un plan d’expériences factoriel vis-à-vis d’un sur-modèle. In: Société Française de Statistiques (Ed.), Proceedings of the 30th Journées de Statistique, Ecole Nationale de la Statistique et de l’Analyse de l’Information, Bruz, pp. 55-59.
[26] Liu, S.X.; Wiens, D.P., Robust designs for approximately polynomial regression, J. statist. plann. inference, 64, 369-381, (1997) · Zbl 0946.62068
[27] Montepiedra, G.; Fedorov, V., Minimum bias designs with constraints, J. statist. plann. inference, 63, 97-111, (1997) · Zbl 0899.62096
[28] Pesotchinsky, L., Optimal robust designslinear regression in rk, Ann. statist., 10, 511-525, (1982) · Zbl 0489.62065
[29] Ruggoo, A., Vandebroek, M., 2003. Two-stage designs robust to model uncertainty. Research Report 0319, Department of Applied Economics, Katholieke Universiteit Leuven. · Zbl 1136.62326
[30] Sacks, J.; Ylvisaker, D., Some model robust designs in regression, Ann. statist., 12, 1324-1348, (1984) · Zbl 0556.62054
[31] Snee, R.D., Developing blending models for gasoline and other mixtures, Technometrics, 23, 2, 119-130, (1981)
[32] Studden, W.J., Some robust-type D-optimal designs in polynomial regression, J. amer. statist. assoc., 77, 916-921, (1982) · Zbl 0505.62062
[33] Welch, W., A Mean squared error criterion for the design of experiments, Biometrika, 70, 205-213, (1983) · Zbl 0517.62066
[34] Wiens, D.P., Robust minimax designs for multiple linear regression, Linear algebra appl., 127, 327-340, (1990) · Zbl 0714.62062
[35] Wiens, D.P., Minimax designs for approximately linear regression, J. statist. plann. inference, 31, 353-371, (1992) · Zbl 0755.62058
[36] Wiens, D.P., Robust designs for approximately linear regressionm-estimated parameters, J. statist. plann. inference, 40, 135-160, (1994) · Zbl 0807.62056
[37] Wiens, D.P., Robust sequential designs for approximately linear models, Canad. J. statist., 24, 1, 67-79, (1996) · Zbl 0846.62058
[38] Wiens, D.P., Minimax robust designs and weights for approximately specified regression models with heteroscedastic errors, J. amer. statist. assoc., 93, 1440-1450, (1998) · Zbl 1064.62550
[39] Wiens, D.P., Robust weights and designs for biased regression modelsleast squares and generalized M-estimation, J. statist. plann. inference, 83, 395-412, (2000) · Zbl 0976.62075
[40] Wiens, D.P.; Zhou, J., Minimax regression designs for approximately linear models with autocorrelated errors, J. statist. plann. inference, 55, 95-106, (1996) · Zbl 0929.62082
[41] Wiens, D.P.; Zhou, J., Robust designs based on the infinitesimal approach, J. amer. statist. assoc., 92, 1503-1511, (1997) · Zbl 0912.62093
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.