zbMATH — the first resource for mathematics

Generalized module extension Banach algebras: derivations and weak amenability. (English) Zbl 1429.46033
Summary: Let \(A\) and \(X\) be Banach algebras and let \(X\) be an algebraic Banach \(A\)-module. Then the \(\ell^1\)-direct sum \(A\times X\) equipped with the multiplication \[(a,x)(b,y) = (ab,ay+xb+xy)\quad (a,b\in A,\,x,y\in X)\] is a Banach algebra, denoted by \(A \bowtie X\), which will be called “a generalized module extension Banach algebra”. Module extension algebras, Lau product and also the direct sum of Banach algebras are the main examples satisfying this framework. We characterize the structure of \(n\)-dual valued \((n \in \mathbb{N})\) derivations on \(A \bowtie X\) from which we investigate the \(n\)-weak amenability for the algebra \(A \bowtie X\). We apply the results and the techniques of proofs for presenting some older results with simple direct proofs.

46H25 Normed modules and Banach modules, topological modules (if not placed in 13-XX or 16-XX)
46H20 Structure, classification of topological algebras
Full Text: DOI
[1] Bade, W. G.; Curtis, P. C.; Dales, H. G., Amenability and weak amenability for Beurling and Lipschitz algebras, Proc. London Math. Soc., 55, 359-377, (1987) · Zbl 0634.46042
[2] Bade, W. G.; Dales, H. G.; Lykova, Z. A., Algebraic and strong splittings of extensions of Banach algebras, Mem. Amer. Math. Soc., 137, (1999) · Zbl 0931.46034
[3] Bhatt, S. J.; Dabhi, P. A., Arens regularity and amenability of Lau product of Banach algebras defined by a Banach algebra morphism, Bull. Austral. Math. Soc., 87, 195-206, (2013) · Zbl 1282.46041
[4] Choi, Y., Triviality of the generalized Lau product associated to a Banach algebra homomorphism, Bull. Austral. Math. Soc., 94, 286-289, (2016) · Zbl 1377.46029
[5] Dales, H. G., Banach algebras and automatic countinuity, (2000), Clarendon Press: Clarendon Press, Oxford · Zbl 0981.46043
[6] Dales, H. G.; Ghahramani, F.; Grønbæk, N., Derivations into iterated duals of Banach algebras, Studia Math., 128, 1, 19-54, (1998) · Zbl 0903.46045
[7] Ebrahimi Vishki, H. R.; Khoddami, A. R., Character inner amenability of certain Banach algebras, Colloq. Math., 122, 225-232, (2011) · Zbl 1226.46049
[8] Ebrahimi Vishki, H. R.; Khoddami, A. R., n-Weak amenability for Lau product of Banach algebras, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 77, 177-184, (2015) · Zbl 1363.46037
[9] Forrest, B. E.; Marcoux, L. W., Weak amenability of triangular Banach algebras, Trans. Amer. Math. Soc., 354, 1435-1452, (2002) · Zbl 1014.46017
[10] Javanshiri, H.; Nemati, M., On a certain product of Banach algebras and some of its properties, Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci., 15, 219-227, (2014) · Zbl 1399.46067
[11] Johnson, B. E., Weak amenability of group algebras, Bull. London Math. Soc., 23, 281-284, (1991) · Zbl 0757.43002
[12] Kaniuth, E., The Bochner-Schoenberg-Eberline property and spectral synthesis for certain Banch algebra products, Canad. J. Math., 67, 827-847, (2015) · Zbl 1348.46052
[13] Lau, A. T.-M., Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups, Fund. Math., 118, 161-175, (1983) · Zbl 0545.46051
[14] Nemati, M.; Javanshiri, H., Some homological and cohomological notions on T -Lau product of Banach algebras, Banach J. Math. Anal., 9, 183-195, (2015) · Zbl 1312.43001
[15] Sangani Monfared, M., On certain products of Banach algebras with applications to harmonic analysis, Studia Math., 178, 3, 277-294, (2007) · Zbl 1121.46041
[16] Zhang, Y., Weak amenability of module extensions of Banach algebras, Trans. Amer. Math. Soc., 354, 10, 4131-4151, (2002) · Zbl 1008.46019
[17] Zhang, Y., 2m-Weak amenability of group algebras, J. Math. Anal. Appl., 396, 412-416, (2012) · Zbl 1256.43002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.