Propagation dynamics of a nonlocal dispersal Fisher-KPP equation in a time-periodic shifting habitat. (English) Zbl 1428.35174

Summary: This paper is devoted to the study of the propagation dynamics of a nonlocal dispersal Fisher-KPP equation in a time-periodic shifting habitat. We first show that this equation admits a periodic forced wave with the speed at which the habitat is shifting by using the monotone iteration method combined with a pair of generalized super- and sub-solutions. Then we establish the nonexistence, uniqueness and global exponential stability of periodic forced waves by applying the sliding technique and the comparison argument. Finally, we obtain the spreading properties for a large class of solutions.


35K57 Reaction-diffusion equations
35C07 Traveling wave solutions
35B40 Asymptotic behavior of solutions to PDEs
35Q92 PDEs in connection with biology, chemistry and other natural sciences
92D25 Population dynamics (general)
Full Text: DOI


[1] Alfaro, M.; Berestycki, H.; Raoul, G., The effect of climate shift on a species submitted to dispersion, evolution, growth and nonlocal competition, SIAM J. Math. Anal., 49, 562-596 (2017) · Zbl 1364.35377
[2] Alikakos, N. D.; Bates, P. W.; Chen, X., Periodic traveling waves and locating oscillating patterns in multidimensional domains, Trans. Am. Math. Soc., 351, 2777-2805 (1999) · Zbl 0929.35067
[3] Bao, X.-X.; Wang, Z.-C., Existence and stability of time periodic traveling waves for a periodic bistable Lotka-Volterra competition system, J. Differ. Equ., 255, 2402-2435 (2013) · Zbl 1371.35017
[4] Bo, W.-J.; Lin, G.; Ruan, S., Traveling wave solutions for time periodic reaction-diffusion systems, Discrete Contin. Dyn. Syst., 38, 4329-4351 (2018) · Zbl 1397.35057
[5] Bo, W.-J.; Lin, G.; Qi, Y., Propagation dynamics of a time periodic diffusion equation with degenerate nonlinearity, Nonlinear Anal., Real World Appl., 45, 376-400 (2018) · Zbl 1409.35050
[6] Berestycki, H.; Diekmann, O.; Nagelkerke, C.; Zegeling, P., Can a species keep pace with a shifting climate?, Bull. Math. Biol., 71, 399-429 (2009) · Zbl 1169.92043
[7] Berestycki, H.; Rossi, L., Reaction-diffusion equations for population dynamics with forced speed, I - the case of the whole space, Discrete Contin. Dyn. Syst., 21, 41-67 (2008) · Zbl 1173.35542
[8] Berestycki, H.; Rossi, L., Reaction-diffusion equations for population dynamics with forced speed, II - cylindrical type domains, Discrete Contin. Dyn. Syst., 25, 19-61 (2009) · Zbl 1183.35166
[9] Berestycki, H.; Fang, J., Forced waves of the Fisher-KPP equation in a shifting environment, J. Differ. Equ., 264, 2157-2183 (2018) · Zbl 1377.35162
[10] Coville, J., On uniqueness and monotonicity of solutions of non-local reaction diffusion equation, Ann. Mat., 185, 461-485 (2006) · Zbl 1232.35084
[11] Coville, J., Maximum principles, sliding techniques and applications to nonlocal equations, Electron. J. Differ. Equ., 2007, 1-23 (2007) · Zbl 1137.35321
[12] Coville, J.; Dávila, J.; Martínez, S., Nonlocal anisotropic dispersal with monostable nonlinearity, J. Differ. Equ., 244, 3080-3118 (2008) · Zbl 1148.45011
[13] Du, Y.; Wei, L.; Zhou, L., Spreading in a shifting environment modeled by the diffusive logistic equation with a free boundary, J. Dyn. Differ. Equ., 30, 1389-1426 (2018) · Zbl 1408.35227
[14] Fang, J.; Zhao, X.-Q., Traveling waves for monotone semiflows with weak compactness, SIAM J. Math. Anal., 46, 3678-3704 (2014) · Zbl 1315.35051
[15] Fang, J.; Lou, Y.; Wu, J., Can pathogen spread keep pace with its host invasion?, SIAM J. Appl. Math., 76, 1633-1657 (2016) · Zbl 1347.35223
[16] J. Fang, R. Peng, X.-Q. Zhao, Propagation dynamics of a reaction-diffusion equation in a time-periodic shifting environment, preprint, 2018.
[17] Fife, P., Some nonclassical trends in parabolic-like evolutions, (Trends in Nonlinear Analysis (2003), Springer: Springer Berlin), 153-191 · Zbl 1072.35005
[18] Hu, C.; Li, B., Spatial dynamics for lattice differential equations with a shifting habitat, J. Differ. Equ., 259, 1967-1989 (2015) · Zbl 1388.35202
[19] Hu, H.; Zou, X., Existence of an extinction wave in the Fisher equation with a shifting habitat, Proc. Am. Math. Soc., 145, 4763-4771 (2017) · Zbl 1372.34057
[20] Ignat, L. I.; Rossi, J. D., A nonlocal convection-diffusion equation, J. Funct. Anal., 251, 399-437 (2007) · Zbl 1149.35009
[21] Jin, Y.; Zhao, X.-Q., Spatial dynamics of a periodic population model with dispersal, Nonlinearity, 22, 1167-1189 (2009) · Zbl 1161.92047
[22] Lee, C. T., Non-local concepts and models in biology, J. Theor. Biol., 210, 201-219 (2001)
[23] Lei, C.; Du, Y., Asymptotic profile of the solution to a free boundary problem arising in a shifting climate model, Discrete Contin. Dyn. Syst., Ser. B, 22, 895-911 (2017) · Zbl 1360.35299
[24] Li, B.; Bewick, S.; Shang, J.; Fagan, W. F., Persistence and spread of a species with a shifting habitat edge, SIAM J. Appl. Math., 5, 1397-1417 (2014) · Zbl 1345.92120
[25] Li, W.-T.; Zhang, L.; Zhang, G.-B., Invasion entire solutions in a competition system with nonlocal dispersal, Discrete Contin. Dyn. Syst., 35, 1531-1560 (2015) · Zbl 1319.35088
[26] Li, W.-T.; Wang, J.-B.; Zhao, X.-Q., Spatial dynamics of a nonlocal dispersal population model in a shifting environment, J. Nonlinear Sci., 28, 1189-1219 (2018) · Zbl 1394.35240
[27] Liang, X.; Yi, Y.; Zhao, X.-Q., Spreading speeds and traveling waves for periodic evolution system, J. Differ. Equ., 231, 57-77 (2006) · Zbl 1105.37017
[28] Liang, X.; Zhao, X.-Q., Asymptotic speeds of spread and traveling waves for monostable semiflows with application, Commun. Pure Appl. Math., 60, 1-40 (2007)
[29] Lutscher, F.; Pachepsky, E.; Lewis, M. A., The effect of dispersal patterns on stream populations, SIAM J. Appl. Math., 65, 1305-1327 (2005) · Zbl 1068.92002
[30] Murray, J., Mathematical Biology (1993), Springer: Springer Berlin-Heidelberg, New York · Zbl 0779.92001
[31] Nguyen, T.; Rawal, N., Coexistence and extinction in time-periodic Volterra-Lotka type systems with nonlocal dispersal, Discrete Contin. Dyn. Syst., Ser. B, 23, 3799-3816 (2018) · Zbl 1404.45014
[32] Rodriguez, N., On an integro-differential model for pest control in a heterogeneous environment, J. Math. Biol., 70, 1177-1206 (2015) · Zbl 1345.92166
[33] Shen, W.; Shen, Z., Transition fronts in nonlocal equations with time heterogeneous ignition nonlinearity, Discrete Contin. Dyn. Syst., 37, 1013-1037 (2017) · Zbl 1357.35078
[34] Shen, W.; Shen, Z., Transition fronts in time heterogeneous and random media of ignition type, J. Differ. Equ., 262, 454-485 (2017) · Zbl 1401.35187
[35] Shen, W.; Shen, Z., Stability, uniqueness and recurrence of generalized traveling waves in time heterogeneous media of ignition type, Trans. Am. Math. Soc., 369, 2573-2613 (2017) · Zbl 1357.35079
[36] Shen, Z.; Vo, H.-H., Nonlocal dispersal equations in time-periodic media: principal spectral theory, limiting properties and long-time dynamics, J. Differ. Equ., 267, 1423-1466 (2019) · Zbl 1412.35180
[37] Vo, H.-H., Persistence versus extinction under a climate change in mixed environments, J. Differ. Equ., 259, 4947-4988 (2015) · Zbl 1330.35216
[38] Wang, J.-B.; Zhao, X.-Q., Uniqueness and global stability of forced waves in a shifting environment, Proc. Am. Math. Soc., 147, 1467-1481 (2019) · Zbl 1407.35116
[39] Wang, Z.-C.; Zhang, L.; Zhao, X.-Q., Time periodic traveling waves for a periodic and diffusive SIR epidemic model, J. Dyn. Differ. Equ., 30, 379-403 (2018) · Zbl 1384.35044
[40] Weng, P.; Zhao, X.-Q., Spreading speed and traveling waves for a multi-type SIS epidemic model, J. Differ. Equ., 229, 270-296 (2006) · Zbl 1126.35080
[41] Yagisita, H., Existence and nonexistence of traveling waves for a nonlocal monostable equation, Publ. Res. Inst. Math. Sci., Kyoto Univ., 45, 925-953 (2009) · Zbl 1191.35093
[42] Yu, X.; Zhao, X.-Q., A periodic reaction-advection-diffusion model for a stream population, J. Differ. Equ., 258, 3037-3062 (2015) · Zbl 1335.35132
[43] Zhang, G.-B.; Li, W.-T.; Wang, Z.-C., Spreading speeds and traveling waves for nonlocal dispersal equations with degenerate monostable nonlinearity, J. Differ. Equ., 252, 5096-5124 (2012) · Zbl 1250.35061
[44] Zhao, G.; Ruan, S., Existence, uniqueness and asymptotic stability of time periodic traveling waves for a periodic Lotka-Volterra competition system with diffusion, J. Math. Pures Appl., 95, 627-671 (2011) · Zbl 1227.35125
[45] Zhao, G.; Ruan, S., Time periodic traveling wave solutions for periodic advection-reaction-diffusion systems, J. Differ. Equ., 257, 1078-1147 (2014) · Zbl 1304.35199
[46] Zhao, X.-Q., Dynamical Systems in Population Biology (2017), Springer-Verlag: Springer-Verlag New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.