zbMATH — the first resource for mathematics

Delay independent robust stability analysis of delayed fractional quaternion-valued leaky integrator echo state neural networks with QUAD condition. (English) Zbl 1428.34020
Summary: This paper studies the stability of fractional order (FO) continuous-time quaternion-valued Leaky Integrator Echo State Neural Networks (NN). The delay independent robust stability of NN with QUAD vector field activation functions under time varying delays is derived. The analysis follows the FO Lyapunov theorem while decomposing the NN into four real-valued systems. The existence and uniqueness of the equilibrium point are also verified by means of a contraction map on the decomposed NN. The new approach is tested in the stability analysis of the FO quaternion-valued Echo State NN without time delays, complex-valued Echo State and quaternion-/complex-valued Hopfield NN with/without time delays. Two numerical examples demonstrate the feasibility of the proposed method.

34A08 Fractional ordinary differential equations and fractional differential inclusions
92B20 Neural networks for/in biological studies, artificial life and related topics
34B45 Boundary value problems on graphs and networks for ordinary differential equations
Full Text: DOI
[1] Wang, D.; Aziz, M.; Helaoui, M.; Ghannouchi, F. M., Augmented real-valued time-delay neural network for compensation of distortions and impairments in wireless transmitters, IEEE Trans. Neural Netw. Learn. Syst., 30, 1, 242-254 (2019)
[2] Sun, C.; He, W.; Hong, J., Neural network control of a flexible robotic manipulator using the lumped spring-mass model, IEEE Trans. Syst. Man. Cybern. Syst., 47, 8, 1863-1874 (2017)
[3] Morton, J.; Wheeler, T. A.; Kochenderfer, M. J., Analysis of recurrent neural networks for probabilistic modeling of driver behavior, IEEE Trans. Intell. Transp. Syst., 18, 5, 1289-1298 (2017)
[4] Yang, C.; Wang, X.; Li, Z.; Li, Y.; Su, C.-Y., Teleoperation control based on combination of wave variable and neural networks, IEEE Trans. Syst. Man. Cybern. Syst., 47, 8, 2125-2136 (2017)
[5] Morita, M., Associative memory with nonmonotone dynamics, Neural Netw., 6, 1, 115-126 (1993)
[6] Dai, K.; Zhao, J.; Cao, F., A novel algorithm of extended neural networks for image recognition, Eng. Appl. Artif. Intell., 42, 57-66 (2015)
[7] Jankowski, S.; Lozowski, A.; Zurada, J. M., Complex-valued multistate neural associative memory, IEEE Trans. Neural Netw., 7, 6, 1491-1496 (1996)
[8] Hirose, A., Complex-Valued Neural Networks, 400 (2012), Springer Science & Business Media · Zbl 1235.68016
[9] Zhou, B.; Song, Q., Boundedness and complete stability of complex-valued neural networks with time delay, IEEE Trans. Neural Netw. Learn. Syst., 24, 8, 1227-1238 (2013)
[10] Aizenberg, I., Why we need complex-valued neural networks?, Complex-Valued Neural Networks with Multi-Valued Neurons, 1-53 (2011), Springer
[11] Chou, J. C., Quaternion kinematic and dynamic differential equations, IEEE Trans. Robot. Autom., 8, 1, 53-64 (1992)
[12] Ujang, B. C.; Took, C. C.; Mandic, D. P., Quaternion-valued nonlinear adaptive filtering, IEEE Trans. Neural Netw., 22, 8, 1193-1206 (2011)
[13] Choe, S. B.; Faraway, J. J., Modeling head and hand orientation during motion using quaternions, Technical Report (2004), SAE Technical Paper
[14] Isokawa, T.; Kusakabe, T.; Matsui, N.; Peper, F., Quaternion neural network and its application, Proceedings of the International Conference on Knowledge-Based and Intelligent Information and Engineering Systems, 318-324 (2003), Springer
[15] Yoshida, M.; Kuroe, Y.; Mori, T., Models of hopfield-type quaternion neural networks and their energy functions, Int. J. Neural Syst., 15, 1, 129-135 (2005)
[16] Isokawa, T.; Matsui, N.; Nishimura, H., Quaternionic neural networks: Fundamental properties and applications, Complex-Valued Neural Networks: Utilizing High-Dimensional Parameters, 411-439 (2009), IGI Global
[17] Chen, X.; Song, Q.; Li, Z., Design and analysis of quaternion-valued neural networks for associative memories, IEEE Trans. Syst. Man. Cybern. Syst., 48, 12, 2305-2314 (2017)
[18] Kusamichi, H.; Isokawa, T.; Matsui, N.; Ogawa, Y.; Maeda, K., A new scheme for color night vision by quaternion neural network, Proceedings of the Second International Conference on Autonomous Robots and Agents, 1315, 101-106 (2004), Citeseer
[19] Machado, J. T., Fractional dynamics in the Rayleigh’s piston, Commun. Nonlinear Sci. Numer. Simul., 31, 1-3, 76-82 (2016)
[20] Baleanu, D.; Machado, J. A.T.; Luo, A. C., Fractional Dynamics and Control (2011), Springer Science & Business Media
[21] Sabatier, J.; Agrawal, O. P.; Machado, J. T., Advances in Fractional Calculus, 4 (2007), Springer · Zbl 1116.00014
[22] Lima, M. F.; Machado, J.; Crisóstomo, M., Fractional dynamics in mechanical manipulation, J. Comput. Nonlinear Dyn., 3, 2, 021203-021212 (2008)
[23] Wang, H.; Yu, Y.; Wen, G.; Zhang, S.; Yu, J., Global stability analysis of fractional-order Hopfield neural networks with time delay, Neurocomputing, 154, 15-23 (2015)
[24] Wang, L.; Song, Q.; Liu, Y.; Zhao, Z.; Alsaadi, F. E., Finite-time stability analysis of fractional-order complex-valued memristor-based neural networks with both leakage and time-varying delays, Neurocomputing, 245, 86-101 (2017)
[25] Ke, Y.; Miao, C., Stability analysis of fractional-order Cohen-Grossberg neural networks with time delay, Int. J. Comput. Math., 92, 6, 1102-1113 (2015) · Zbl 1321.82032
[26] Ding, Z.; Zeng, Z.; Wang, L., Robust finite-time stabilization of fractional-order neural networks with discontinuous and continuous activation functions under uncertainty, IEEE Trans. Neural Netw. Learn. Syst., 29, 5, 1477-1490 (2018)
[27] Wu, A.; Zeng, Z., Global Mittag-Leffler stabilization of fractional-order memristive neural networks, IEEE Trans. Neural Netw. Learn. Syst., 28, 1, 206-217 (2017)
[28] Li, H. L.; Jiang, Y. L.; Wang, Z.; Zhang, L.; Teng, Z., Global Mittag-Leffler stability of coupled system of fractional-order differential equations on network, Appl. Math. Comput., 270, 269-277 (2015) · Zbl 1410.34025
[29] Huang, C.; Cao, J.; Xiao, M.; Alsaedi, A.; Alsaadi, F. E., Controlling bifurcation in a delayed fractional predator – prey system with incommensurate orders, Appl. Math. Comput., 293, 293-310 (2017) · Zbl 1411.37068
[30] Tu, Z.; Ding, N.; Li, L.; Feng, Y.; Zou, L.; Zhang, W., Adaptive synchronization of memristive neural networks with time-varying delays and reaction – diffusion term, Appl. Math. Comput., 311, 118-128 (2017) · Zbl 1426.93289
[31] Yao, X.; Zhong, S.; Hu, T.; Cheng, H.; Zhang, D., Uniformly stable and attractive of fractional-order memristor-based neural networks with multiple delays, Appl. Math. Comput., 347, 392-403 (2019) · Zbl 1428.92017
[32] Zhang, J.; Wu, J.; Bao, H.; Cao, J., Synchronization analysis of fractional-order three-neuron BAM neural networks with multiple time delays, Appl. Math. Comput., 339, 441-450 (2018) · Zbl 1428.92018
[33] Chang, W.; Zhu, S.; Li, J.; Sun, K., Global Mittag-Leffler stabilization of fractional-order complex-valued memristive neural networks, Appl. Math. Comput., 338, 346-362 (2018) · Zbl 1427.92007
[34] Huang, C.; Cao, J.; Xiao, M.; Alsaedi, A.; Hayat, T., Bifurcations in a delayed fractional complex-valued neural network, Appl. Math. Comput., 292, 210-227 (2017) · Zbl 1410.37074
[35] Zhang, L.; Song, Q.; Zhao, Z., Stability analysis of fractional-order complex-valued neural networks with both leakage and discrete delays, Appl. Math. Comput., 298, 296-309 (2017) · Zbl 1411.34024
[36] Zhang, Y.; Yu, Y.; Cui, X., Dynamical behaviors analysis of memristor-based fractional-order complex-valued neural networks with time delay, Appl. Math. Comput., 339, 242-258 (2018) · Zbl 1428.93082
[37] Wan, P.; Jian, J., Global Mittag-Leffler boundedness for fractional-order complex-valued Cohen-Grossberg neural networks, Neural Process. Lett., 49, 1, 121-139 (2019)
[38] Yang, X.; Li, C.; Huang, T.; Song, Q., Mittag-leffler stability analysis of nonlinear fractional-order systems with impulses, Appl. Math. Comput., 293, 416-422 (2017) · Zbl 1411.34023
[39] Yang, X.; Li, C.; Song, Q.; Chen, J.; Huang, J., Global Mittag-Leffler stability and synchronization analysis of fractional-order quaternion-valued neural networks with linear threshold neurons, Neural Netw., 105, 88-103 (2018)
[40] Liu, Y.; Zhang, D.; Lou, J.; Lu, J.; Cao, J., Stability analysis of quaternion-valued neural networks: decomposition and direct approaches, IEEE Trans. Neural Netw. Learn. Syst., 29, 9, 4201-4211 (2018)
[41] Shu, H.; Song, Q.; Liu, Y.; Zhao, Z.; Alsaadi, F. E., Global μ- stability of quaternion-valued neural networks with non-differentiable time-varying delays, Neurocomputing, 247, 202-212 (2017)
[42] Liu, Y.; Zhang, D.; Lu, J., Global exponential stability for quaternion-valued recurrent neural networks with time-varying delays, Nonlinear Dyn., 87, 1, 553-565 (2017) · Zbl 1371.93098
[43] Tan, M.; Liu, Y.; Xu, D., Multistability analysis of delayed quaternion-valued neural networks with nonmonotonic piecewise nonlinear activation functions, Appl. Math. Comput., 341, 229-255 (2019) · Zbl 1428.34108
[44] Zhang, D.; Kou, K. I.; Liu, Y.; Cao, J., Decomposition approach to the stability of recurrent neural networks with asynchronous time delays in quaternion field, Neural Netw., 94, 55-66 (2017)
[45] Tu, Z.; Cao, J.; Alsaedi, A.; Hayat, T., Global dissipativity analysis for delayed quaternion-valued neural networks, Neural Netw., 89, 97-104 (2017)
[46] Tu, Z.; Zhao, Y.; Ding, N.; Feng, Y.; Zhang, W., Stability analysis of quaternion-valued neural networks with both discrete and distributed delays, Appl. Math. Comput., 343, 342-353 (2019) · Zbl 1428.92016
[47] Liu, Y.; Zhang, D.; Lu, J.; Cao, J., Global μ-stability criteria for quaternion-valued neural networks with unbounded time-varying delays, Inf. Sci., 360, 273-288 (2016)
[48] Chen, X.; Li, Z.; Song, Q.; Hu, J.; Tan, Y., Robust stability analysis of quaternion-valued neural networks with time delays and parameter uncertainties, Neural Netw., 91, 55-65 (2017)
[49] Lun, S. X.; Yao, X. S.; Hu, H. F., A new echo state network with variable memory length, Inf. Sci., 370, 103-119 (2016)
[50] Jaeger, H.; Lukoševičius, M.; Popovici, D.; Siewert, U., Optimization and applications of echo state networks with leaky-integrator neurons, Neural Netw., 20, 3, 335-352 (2007) · Zbl 1132.68554
[51] Pahnehkolaei, S. M.A.; Alfi, A.; Machado, J. T., Dynamic stability analysis of fractional order leaky integrator echo state neural networks, Commun. Nonlinear Sci. Numer. Simul., 47, 328-337 (2017)
[52] Pahnehkolaei, S. M.A.; Alfi, A.; Machado, J. T., Uniform stability of fractional order leaky integrator echo state neural network with multiple time delays, Inf. Sci., 418, 703-716 (2017)
[53] Newman, M. E., The structure and function of complex networks, SIAM Rev., 45, 2, 167-256 (2003) · Zbl 1029.68010
[54] Zhang, Q.; Lu, J.; Lu, J.; Chi, K. T., Adaptive feedback synchronization of a general complex dynamical network with delayed nodes, IEEE Trans. Circuits Syst. II: Express Br., 55, 2, 183-187 (2008)
[55] DeLellis, P.; di Bernardo, M.; Russo, G., On QUAD, Lipschitz, and contracting vector fields for consensus and synchronization of networks, IEEE Trans. Circuits Syst. I: Regul. Pap., 58, 3, 576-583 (2011)
[56] Valério, D.; Trujillo, J. J.; Rivero, M.; Machado, J. T.; Baleanu, D., Fractional calculus: a survey of useful formulas, Eur. Phys. J. Spec. Top., 222, 8, 1827-1846 (2013)
[57] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations, 204 (2006), Elsevier Science Limited · Zbl 1092.45003
[58] Li, Y.; Chen, Y.; Podlubny, I., Mittag-Leffler stability of fractional order nonlinear dynamic systems, Automatica, 45, 8, 1965-1969 (2009) · Zbl 1185.93062
[59] Zhang, H.; Wang, Z.; Liu, D., A comprehensive review of stability analysis of continuous-time recurrent neural networks, IEEE Trans. Neural Netw. Learn. Syst., 25, 7, 1229-1262 (2014)
[60] Bhalekar, S.; Daftardar-Gejji, V., A predictor-corrector scheme for solving nonlinear delay differential equations of fractional order, J. Fract. Calculus Appl., 1, 5, 1-9 (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.