×

zbMATH — the first resource for mathematics

A spectral-element discontinuous Galerkin lattice Boltzmann method for nearly incompressible flows. (English) Zbl 1427.76189
Summary: We present a spectral-element discontinuous Galerkin lattice Boltzmann method for solving nearly incompressible flows. Decoupling the collision step from the streaming step offers numerical stability at high Reynolds numbers. In the streaming step, we employ high-order spectral-element discontinuous Galerkin discretizations using a tensor product basis of one-dimensional Lagrange interpolation polynomials based on Gauss-Lobatto-Legendre grids. Our scheme is cost-effective with a fully diagonal mass matrix, advancing time integration with the fourth-order Runge-Kutta method. We present a consistent treatment for imposing boundary conditions with a numerical flux in the discontinuous Galerkin approach. We show convergence studies for Couette flows and demonstrate two benchmark cases with lid-driven cavity flows for \(Re = 400-5000\) and flows around an impulsively started cylinder for \(Re = 550-9500\). Computational results are compared with those of other theoretical and computational work that used a multigrid method, a vortex method, and a spectral element model.

MSC:
76M28 Particle methods and lattice-gas methods
76M22 Spectral methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Wolf-Gladrow, D.A., Lattice-gas cellular automata and lattice Boltzmann models: an introduction, Lecture notes in mathematics, (2000), Springer Berlin · Zbl 0999.82054
[2] Succi, S., The lattice Boltzmann equation: for fluid dynamics and beyond, (2001), Oxford University Press · Zbl 0990.76001
[3] He, X.Y.; Luo, L.-S., Lattice Boltzmann model for the incompressible navier – stokes equation, J. stat. phys., 88, 927-944, (1997) · Zbl 0939.82042
[4] He, X.; Luo, L.-S., Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation, Phys. rev. E, 53, 6811-6817, (1997)
[5] Abe, T., Derivation of the lattice Boltzmann method by means of the discrete ordinate method for the Boltzmann equation, J. comput. phys., 131, 241-246, (1997) · Zbl 0877.76062
[6] Cao, N.; Chen, S.; Jin, S.; Martinez, D., Physical symmetry and lattice symmetry in the lattice Boltzmann method, Phys. rev. E, 55, R21, (1997)
[7] McNamara, G.R.; Garcia, A.L.; Alder, B.J., Stabilization of thermal lattice Boltzmann models, J. stat. phys., 81, 395-408, (1995) · Zbl 1106.82353
[8] He, X.; Luo, L.-S.; Dembo, M., Some progress in lattice Boltzmann method. part I. nonuniform mesh grids, J. comput. phys., 129, 357-363, (1996) · Zbl 0868.76068
[9] Mei, R.; Shyy, W., On the finite difference-based lattice Boltzmann method in curvilinear coordinates, J. comput. phys., 143, 426-448, (1998) · Zbl 0934.76074
[10] Zhang, R.; Chen, H.; Qian, Y.H.; Chen, S., Effective volumetric lattice Boltzmann scheme, Phys. rev. E, 63, 056705, (2001)
[11] Sofonea, V.; Sekerka, R.F., Viscosity of finite difference lattice Boltzmann models, J. comput. phys., 184, 422-434, (2003) · Zbl 1062.76556
[12] Bardow, A.; Karlin, I.V.; Gusev, A.A., General characteristic-based algorithm for off-lattice Boltzmann simulations, Europhys. lett., 75, 434-440, (2006)
[13] Lee, T.; Lin, C.-L.; Chen, L.-D., A lattice Boltzmann algorithm for calculation of the laminar jet diffusion flame, J. comput. phys., 215, 133-152, (2006) · Zbl 1093.80003
[14] Xi, H.; Peng, G.; Chou, S.-H., Finite volume lattice Boltzmann method, Phys. rev. E, 59, 6202, (1999)
[15] Ubertini, S.; Bella, G.; Succi, S., Unstructured lattice Boltzmann method: further development, Phys. rev. E, 68, 016701, (2003)
[16] Stiebler, M.; Tölke, J.; Krafczyk, M., An upwind discretization scheme for the finite volume lattice Boltzmann method, Comput. fluids, 35, 814-819, (2006) · Zbl 1177.76329
[17] Dubois, F.; Lallemand, P., On lattice Boltzmann scheme, finite volumes and boundary conditions, Prog. comput. fluid dyn., 8, 11-24, (2008) · Zbl 1169.76049
[18] Patil, V.; Lakshmisha, K.N., Finite volume TVD formulation of lattice Boltzmann simulation on unstructured mesh, J. comput. phys., 228, 5262-5279, (2009) · Zbl 1280.76054
[19] Lee, T.; Lin, C.-L., A characteristic Galerkin method for discrete Boltzmann equation, J. comput. phys., 171, 336-356, (2001) · Zbl 1017.76043
[20] Lee, T.; Lin, C.-L., An Eulerian description of the streaming process in the lattice Boltzmann equation, J. comput. phys., 185, 445-471, (2003) · Zbl 1047.76106
[21] Li, Y.; LeBoeuf, E.J.; Basu, P.K., Least-squares finite-element scheme for the lattice Boltzmann method on an unstructured mesh, Phys. rev. E, 72, 046711, (2005)
[22] Shi, X.; Lin, J.; Yu, Z., Discontinuous Galerkin spectral element lattice Boltzmann method on triangular element, Int. J. numer. meth. fluids, 42, 1249-1261, (2003) · Zbl 1033.76046
[23] Düster, A.; Demkowicz, L.; Rank, E., High-order finite elements applied to the discrete Boltzmann equation, Int. J. numer. meth. eng., 67, 1094-1121, (2006) · Zbl 1113.76049
[24] Lee, T.; Leaf, G.K., Eulerian description of high-order bounce-back scheme for lattice Boltzmann equation with curved boundary, Eur. phys. J. special topics, 171, 3-8, (2009)
[25] Pan, C.; Luo, L.-S.; Miller, C.T., An evaluation of lattice Boltzmann scheme for porous medium flow simulation, Comput. fluids, 35, 898-909, (2006) · Zbl 1177.76323
[26] Chun, B.; Ladd, A.J.C., Interpolated boundary condition for lattice Boltzmann simulations of flows in narrow gaps, Phys. rev. E, 75, 066705, (2007)
[27] Hesthaven, J.S.; Warburton, T., Nodal discontinuous Galerkin methods, algorithms, analysis, and applications, Texts in applied mathematics, (2008), Springer · Zbl 1134.65068
[28] He, X.; Zou, Q.; Luo, L.-S.; Dembo, M., Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model, J. stat. phys., 87, 115-136, (1997) · Zbl 0937.82043
[29] Bhatnagar, P.L.; Gross, E.P.; Krook, M., A model for collision processes in gases, I: small amplitude processes in charged and neutral one-component system, Phys. rev., 94, 511-525, (1954) · Zbl 0055.23609
[30] Qian, Y.H.; D’Humières, D.; Lallemand, P., Lattice BGK models for navier – stokes equation, Europhys. lett., 17, 479-484, (1992) · Zbl 1116.76419
[31] He, X.; Chen, S.; Doolen, G.D., A novel thermal model for the lattice Boltzmann method in incompressible limit, J. comput. phys., 146, 282-300, (1998) · Zbl 0919.76068
[32] Giraldo, F.X.; Restelli, M., A study of spectral element and discontinuous Galerkin methods for the navier – stokes equations in nonhydrostatic atmospheric modeling: equation sets and test cases, J. comput. phys., 227, 3849-3877, (2008) · Zbl 1194.76189
[33] Giraldo, F.X.; Warburton, T., A triangular discontinuous Galerkin oceanic shallow water model, Int. J. numer. meth. fluids, 56, 899-925, (2008) · Zbl 1290.86002
[34] Deville, M.O.; Fischer, P.F.; Mund, E.H., High-order methods for incompressible fluid flow, Cambridge monographs on applied and computational mathematics, (2002), Cambridge University Press · Zbl 1007.76001
[35] Hesthaven, J.S.; Gottlieb, S.; Gottlieb, D., Spectral methods for time-dependent problems, Cambridge monographs on applied and computational mathematics, Vol. 21, (2007), Cambridge University Press · Zbl 1111.65093
[36] M.H. Carpenter, C. Kennedy, Fourth-order 2N-storage Runge-Kutta schemes, NASA Report TM 109112, NASA Langley Research Center (1994).
[37] Ghia, U.; Ghia, K.N.; Chin, C.T., High re solutions for incompressible flow using the navier – stokes equation and multigrid methods, J. comput. phys., 48, 387-411, (1982) · Zbl 0511.76031
[38] Koumoutsakos, P.; Leonard, A., High-resolution simulations of the flow around an impulsively started cylinder using vortex methods, J. fluid mech., 296, 1-38, (1995) · Zbl 0849.76061
[39] Fischer, P.F., An overlapping Schwarz method for spectral element solution of the incompressible navier – stokes equations, J. comput. phys., 133, 84-101, (1997) · Zbl 0904.76057
[40] Niu, X.D.; Chew, Y.T.; Shu, C., Simulation of flows around an impulsively started circular cylinder by Taylor series expansion- and least squares-based lattice Boltzmann method, J. comput. phys., 188, 176-193, (2003) · Zbl 1038.76033
[41] Li, Y.; Shock, R.; Zhang, R.; Chen, H., Numerical study of flow past an impulsively started cylinder by the lattice-Boltzmann method, J. fluid mech., 519, 273-300, (2004) · Zbl 1065.76166
[42] Dupuis, A.; Chatelain, P.; Koumoutsakos, P., An immersed boundary-lattice-Boltzmann method for the simulation of the flow past an impulsively started cylinder, J. comput. phys., 227, 4486-4498, (2008) · Zbl 1136.76041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.