Explicit and exact solutions concerning the antarctic circumpolar current with variable density in spherical coordinates. (English) Zbl 1427.76076

Summary: We use spherical coordinates to devise a new exact solution to the governing equations of geophysical fluid dynamics for an inviscid and incompressible fluid with a general density distribution and subjected to forcing terms. The latter are of paramount importance for the modeling of realistic flows, that is, flows that are observed in some averaged sense in the ocean. Owing to the employment of spherical coordinates we do not need to resort to approximations (e.g., of \(f\)- and \(\beta\)-plane type) that simplify the geometry in the governing equations. Our explicit solution represents a steady purely azimuthal stratified flow with a free surface that – thanks to the inclusion of forcing terms and the consideration of the Earth’s geometry via spherical coordinates – makes it suitable for describing the Antarctic Circumpolar Current and enables an in-depth analysis of the structure of this flow. In line with the latter aspect, we employ functional analytical techniques to prove that the free surface distortion is defined in a unique and implicit way by means of the pressure applied at the free surface. We conclude our discussion by setting out relations between the monotonicity of the surface pressure and the monotonicity of the surface distortion that concur with the physical expectations.
©2019 American Institute of Physics


76E20 Stability and instability of geophysical and astrophysical flows
76B07 Free-surface potential flows for incompressible inviscid fluids
86A05 Hydrology, hydrography, oceanography
Full Text: DOI arXiv


[1] Basu, B., On an exact solution of a nonlinear three-dimensional model in ocean flows with equatorial undercurrent and linear variation in density, Discrete Contin. Dyn. Syst. A., 39, 8, 4783-4796 (2019) · Zbl 1415.35223
[2] Berger, M. S., Nonlinearity and Functional Analysis (1977), Academic Press: Academic Press, New York
[3] Chen, R. M.; Walsh, S.; Wheeler, M., Existence and qualitative theory for stratified solitary water waves, Ann. Inst. H. Poincaré Anal. Non Linéaire, 35, 2, 517-576 (2018) · Zbl 1408.35135
[4] Chu, J.; Escher, J., Steady periodic equatorial water waves with vorticity, Discrete Contin. Dyn. Syst. A., 39, 8, 4713-4729 (2019) · Zbl 1415.76062
[5] Chu, J.; Ionescu-Kruse, D.; Yang, Y., Exact solution and instability for geophysical waves at arbitrary latitude, Discrete Contin. Dyn. Syst. A., 39, 8, 4399-4414 (2019) · Zbl 1419.37075
[6] Constantin, A., On the modelling of equatorial waves, Geophys. Res. Lett., 39, L05602 (2012)
[7] Constantin, A., An exact solution for equatorially trapped waves, J. Geophys. Res.: Oceans, 117, C05029 (2012)
[8] Constantin, A., Some three-dimensional nonlinear equatorial flows, J. Phys. Oceanogr., 43, 165-175 (2013)
[9] Constantin, A., Some nonlinear, equatorially trapped, nonhydrostatic internal geophysical waves, J. Phys. Oceanogr., 44, 2, 781-789 (2014)
[10] Constantin, A.; Ivanov, R. I., A Hamiltonian approach to wave-current interactions in two-layer fluids, Phys. Fluids, 27, 086603 (2015) · Zbl 1326.76021
[11] Constantin, A.; Johnson, R. S., The dynamics of waves interacting with the Equatorial Undercurrent, Geophys. Astrophys. Fluid Dyn., 109, 4, 311-358 (2015)
[12] Constantin, A.; Ivanov, R. I.; Martin, C. I., Hamiltonian formulation for wave-current interactions in stratified rotational flows, Arch. Ration. Mech. Anal., 221, 1417-1447 (2016) · Zbl 1344.35084
[13] Constantin, A.; Johnson, R. S., An exact, steady, purely azimuthal equatorial flow with a free surface, J. Phys. Oceanogr., 46, 6, 1935-1945 (2016)
[14] Constantin, A.; Johnson, R. S., An exact, steady, purely azimuthal flow as a model for the Antarctic Circumpolar Current, J. Phys. Oceanogr., 46, 12, 3585-3594 (2016)
[15] Constantin, A.; Johnson, R. S., A nonlinear, three-dimensional model for ocean flows, motivated by some observations of the Pacific Equatorial Undercurrent and thermocline, Phys. Fluids, 29, 056604 (2017)
[16] Constantin, A.; Johnson, R. S., On the nonlinear, three-dimensional structure of equatorial oceanic flows, J. Phys. Oceanogr., 49, 2029-2042 (2019)
[17] Constantin, A.; Ivanov, R. I., Equatorial wave-current interactions, Commun. Math. Phys., 370, 1, 1-48 (2019) · Zbl 1421.35102
[18] Danabasoglu, G.; Mcwilliams, J. C.; Gent, P. R., The role of mesoscale tracer transport in the global ocean circulation, Science, 264, 264, 1123-1126 (1994)
[19] Donohue, K. A.; Tracey, K. L.; Watts, D. R.; Chidichimo, M. P.; Chereskin, T. K., Mean Antarctic Circumpolar Current transport measured in Drake Passage, Geophys. Res. Lett., 43, 22, 760-767 (2016)
[20] Escher, J.; Matioc, A.-V.; Matioc, B.-V., On stratified steady periodic water waves with linear density distribution and stagnation points, J. Differ. Equations, 251, 2932-2949 (2011) · Zbl 1227.35232
[21] Fedorov, A. V.; Brown, J. N.; Steele, J., Equatorial waves, Encyclopedia of Ocean Sciences, 3679-3695 (2009), Academic Press: Academic Press, New York
[22] Firing, Y. L.; Chereskin, T. K.; Mazloff, M. R., Vertical structure and transport of the Antarctic Circumpolar Current in Drake Passage from direct velocity observations, J. Geophys. Res., 116, C08015 (2011)
[23] Geyer, A.; Quirchmayr, R., Shallow water models for stratified equatorial flows, Discrete Contin. Dyn. Syst. A., 39, 8, 4533-4545 (2019) · Zbl 1415.86007
[24] Haziot, S. V.; Marynets, K., Applying the stereographic projection to modeling of the flow of the Antarctic Circumpolar Current, Oceanography, 31, 3, 68-75 (2018)
[25] Haziot, S. V., Study of an elliptic partial differential equation modelling the Antarctic Circumpolar Current, Discrete Contin. Dyn. Syst. A., 39, 8, 4415-4427 (2019) · Zbl 1415.35229
[26] Henry, D., An exact solution for equatorial geophysical water waves with an underlying current, Eur. J. Mech. B Fluids, 38, 18-21 (2013) · Zbl 1297.86002
[27] Henry, D.; Matioc, B.-V., On the existence of steady periodic capillary-gravity stratified water waves, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 12, 4, 955-974 (2013) · Zbl 1290.35201
[28] Henry, D.; Matioc, A.-V., Global bifurcation of capillary–gravity-stratified water waves, Proc. R. Soc. Edinburgh Sect. A, 144, 4, 775-786 (2014) · Zbl 1297.35175
[29] Henry, D.; Martin, C.-I., Free-surface, purely azimuthal equatorial flows in spherical coordinates with stratification, J. Differ. Equations, 266, 10, 6788-6808 (2019) · Zbl 1412.35241
[30] Henry, D.; Martin, C. I., Azimuthal equatorial flows with variable density in spherical coordinates, Arch. Ration. Mech. Anal., 233, 497-512 (2019) · Zbl 1417.35203
[31] Howard, E.; Hogg, A. M.; Waterman, S.; Marshall, D. P., The injection of zonal momentum by buoyancy forcing in a Southern Ocean model, J. Phys. Oceanogr., 45, 259-271 (2015)
[32] Hsu, H.-C.; Martin, C. I., Free-surface capillary-gravity azimuthal equatorial flows, Nonlinear Anal.: Theory, Methods Appl., 144, 1-9 (2016) · Zbl 1346.35153
[33] Hsu, H.-C.; Martin, C. I., On the existence of solutions and the pressure function related to the Antarctic Circumpolar Current, Nonlinear Anal.: Theory, Methods Appl., 155, 285-293 (2017) · Zbl 1368.35214
[34] Ionescu-Kruse, D., A three-dimensional autonomous nonlinear dynamical system modelling equatorial ocean flows, J. Differ. Equations, 264, 7, 4650-4668 (2018) · Zbl 1386.35403
[35] Ivchenko, V. O.; Richards, K. J., The dynamics of the Antarctic Circumpolar Current, J. Phys. Oceanogr., 26, 753-774 (1996)
[36] Kessler, W. S.; Mcphaden, M. J., Oceanic Equatorial Waves and the 1991-93 El Niño, J. Climate, 8, 1757-1774 (1995)
[37] Kobayashi, H.; Abe-Ouchi, A.; Oka, A., Role of Southern Ocean stratification in glacial atmospheric CO_2 reduction evaluated by a three-dimensional ocean general circulation model, Paleooceanography, 30, 9, 1202-1216 (2015)
[38] Marshall, D. P.; Munday, D. R.; Allison, L. C.; Hay, R. J.; Johnson, H. L., Gill’s model of the Antarctic Circumpolar Current, revisited: The role of latitudinal variations in wind stress, Ocean Modell., 97, 37-51 (2016)
[39] Martin, C. I., Constant vorticity water flows with full Coriolis term, Nonlinearity, 32, 7, 2327-2336 (2019) · Zbl 1420.35244
[40] Matioc, A.-V., An exact solution for geophysical equatorial edge waves over a sloping beach, J. Phys. A: Math. Theor., 45, 36, 365501 (2012) · Zbl 1339.86001
[41] Matioc, A.-V., Exact geophysical waves in stratified fluids, Appl. Anal., 92, 11, 2254-2261 (2013) · Zbl 1292.76018
[42] Matioc, A.-V.; Matioc, B.-V., On periodic water waves with Coriolis effects and isobaric streamlines, J. Nonl. Math. Phys., 19, suppl. 1, 89-103 (2012) · Zbl 1362.76016
[43] Marynets, K., The Antarctic Circumpolar Current as a shallow-water asymptotic solution of Euler’s equation in spherical coordinates, Deep Sea Res., Part II, 160, 58-62 (2019)
[44] Maslowe, S. A., Critical layers in shear flows, Annu. Rev. Fluid. Mech., 18, 405-432 (1986) · Zbl 0634.76046
[45] Mccreary, J. P., Modeling equatorial ocean circulation, Annu. Rev. Fluid Mech., 17, 359-409 (1985) · Zbl 0596.76115
[46] Olbers, D.; Borowski, D.; Völker, C.; Wölff, J.-O., The dynamical balance, transport and circulation of the Antarctic Circumpolar Current, Antarctic Sci., 16, 439-470 (2004)
[47] Phillips, H.; Legresy, B.; Bindoff, N., Explainer how the Antarctic Circumpolar Current helps keep Antarctica frozen, The Conversation, November, 15 (2018)
[48] Quirchmayr, R., A steady, purely azimuthal flow model for the Antarctic Circumpolar Current, Monatsh. Math., 187, 3, 565-572 (2018) · Zbl 1400.86003
[49] Rintoul, S. R.; Hughes, C.; Olbers, D.; Seidler, G.; Church, J.; Gould, J., The Antarctic Circumpolar Current system, 271-302 (2001), Academic Press: Academic Press, San Diego
[50] Walsh, S., Stratified steady periodic water waves, SIAM J. Math. Anal., 41, 1054-1105 (2009) · Zbl 1196.35173
[51] Wheeler, M. H., On stratified water waves with critical layers and Coriolis forces, Discrete Contin. Dyn. Syst. A., 39, 8, 4747-4770 (2019) · Zbl 1415.76086
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.