Semi-analytical solution of multilayer diffusion problems with time-varying boundary conditions and general interface conditions. (English) Zbl 1427.35106

Summary: We develop a new semi-analytical method for solving multilayer diffusion problems with time-varying external boundary conditions and general internal boundary conditions at the interfaces between adjacent layers. The convergence rate of the semi-analytical method, relative to the number of eigenvalues, is investigated and the effect of varying the interface conditions on the solution behaviour is explored. Numerical experiments demonstrate that solutions can be computed using the new semi-analytical method that are more accurate and more efficient than the unified transform method of N. E. Sheils [“Multilayer diffusion in a composite medium with imperfect contact”, Appl. Math. Model. 46, 450–464 (2017; doi:10.1016/j.apm.2017.01.049)]. Furthermore, unlike classical analytical solutions and the unified transform method, only the new semi-analytical method is able to correctly treat problems with both time-varying external boundary conditions and a large number of layers. The paper is concluded by replicating solutions to several important industrial, environmental and biological applications previously reported in the literature, demonstrating the wide applicability of the work.


35K51 Initial-boundary value problems for second-order parabolic systems
Full Text: DOI arXiv


[1] Asvestas, M.; Sifalakis, A. G.; Papadopoulou, E. P.; Saridakis, Y. G., Fokas method for a multi-domain linear reaction-diffusion equation with discontinuous diffusivity, J. Phys. Conf. Ser., 490, 012143 (2014)
[2] Carr, E. J.; Turner, I. W., A semi-analytical solution for multilayer diffusion in a composite medium consisting of a large number of layers, Appl. Math. Model., 40, 7034-7050 (2016) · Zbl 1471.74014
[3] Carr, E. J.; Turner, I. W.; Perré, P., Macroscale modeling of multilayer diffusion: using volume averaging to correct the boundary condition, Appl. Math. Model., 47, 600-618 (2017) · Zbl 1446.74011
[4] Fokas, A. S., A unified transform method for solving linear and certain nonlinear PDEs, Proc. R. Soc. Lond. A, 453, 1411-1443 (1997) · Zbl 0876.35102
[6] Hickson, R. I.; Barry, S. I.; Mercer, G. N., Critical times in multilayer diffusion. Part 1: exact solutions, Int. J. Heat Mass Transf., 52, 5776-5783 (2009) · Zbl 1177.80022
[7] Hickson, R. I.; Barry, S. I.; Mercer, G. N.; Sidhu, H. S., Finite difference schemes for multilayer diffusion, Math. Comput. Model., 54, 210-220 (2011) · Zbl 1225.76215
[8] Johnston, P. R., Diffusion in composite media: solution with simple eigenvalues and eigenfunctions, Math. Comput. Model., 15, 10, 115-123 (1991) · Zbl 0754.35049
[9] Kaoui, B.; Lauricella, M.; Pontrelli, G., Mechanistic modelling of drug release from multi-layer capsules, Comput. Biol. Med., 93, 149-157 (2018)
[10] Liu, C.; Ball, W. P., Analytical modeling of diffusion-limited contamination and decontamination in a two-layer porous medium, Adv. Water Resour., 21, 297-313 (1998)
[11] Liu, G.; Si, B. C., Multi-layer diffusion model and error analysis applied to chamber-based gas fluxes measurements, Agric. Forest Meteorol., 149, 169-178 (2009)
[12] Mantzavinos, D.; Papadomanolaki, M. G.; Saridakis, Y. G.; Sifalakis, A. G., Fokas transform method for a brain tumor invasion model with heterogeneous diffusion in 1+1 dimensions, Appl. Numer. Math., 104, 47-61 (2016) · Zbl 1338.92049
[13] Mikhailov, M. D.; Ozisik, M. N.; Vulchanov, N. L., Diffusion in composite layers with automatic solution of the eigenvalue problem, Int. J. Heat Mass Transf., 26, 8, 1131-1141 (1983) · Zbl 0537.76059
[14] de Monte, F., Transient heat conduction in one-dimensional composite slab. A ‘natural’ analytic approach, Int. J. Heat Mass Transf., 43, 3607-3619 (2000) · Zbl 0964.80003
[15] Mulholland, G. P.; Cobble, M. H., Diffusion through composite media, Int. J. Heat Mass Transf., 15, 147-160 (1972)
[16] Pontrelli, G.; de Monte, F., Mass diffusion through two-layer porous media: an application to the drug-eluting stent, Int. J. Heat Mass Transf., 50, 3658-3669 (2007) · Zbl 1113.80013
[17] Rodrigo, M. R.; Worthy, A. L., Solution of multilayer diffusion problems via the Laplace transform, J. Math. Anal. Appl., 444, 475-502 (2016) · Zbl 1358.35052
[18] Sheils, N. E., Multilayer diffusion in a composite medium with imperfect contact, Appl. Math. Model., 46, 450-464 (2017) · Zbl 1443.74105
[19] Simpson, M. J.; McInerney, S.; Carr, E. J.; Cuttle, L., Quantifying the efficacy of first aid treatments for burn injuries using mathematical modelling and in vivo porcine experiments, Scientific Reports, 7, 10925 (2017)
[20] Strauss, W. A., Partial Differential Equations: An Introduction (1992), John Wiley & Sons, Inc. · Zbl 0817.35001
[21] Todo, H.; Oshizaka, T.; Kadhum, W. R.; Sugibayashi, K., Mathematical model to predict skin concentration after topical application of drugs, Pharmaceutics, 5, 634-651 (2013)
[22] Trefethen, L. N.; Weideman, J. A.C.; Schmelzer, T., Talbot quadratures and rational approximations, BIT Numer. Math., 46, 653-670 (2006) · Zbl 1103.65030
[23] Trefry, M. G.; Whyte, D. S., Analytical solutions for partitioned diffusion in laminates: I. initial value problem with steady cauchy conditions, Transp. Porous Med., 37, 93-128 (1999)
[24] Trim, D. W., Applied Partial Differential Equations (1990), PWS-KENT Pub. Co
[25] Yates, S. R.; Papiernik, S. K.; Gao, F.; Gan, J., Analytical solutions for the transport of volatile organic chemicals in unsaturated layered systems, Water Resour. Res., 36, 8, 1993-2000 (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.