×

zbMATH — the first resource for mathematics

On Clifford double mirrors of toric complete intersections. (English) Zbl 1427.14080
Summary: We present a construction of noncommutative double mirrors to complete intersections in toric varieties. This construction unifies existing sporadic examples and explains the underlying combinatorial and physical reasons for their existence.

MSC:
14J33 Mirror symmetry (algebro-geometric aspects)
14A22 Noncommutative algebraic geometry
14M25 Toric varieties, Newton polyhedra, Okounkov bodies
58B34 Noncommutative geometry (à la Connes)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Addington, N., The derived category of the intersection of four quadrics, preprint
[2] Aspinwall, P., Exoflops in two dimensions, J. High Energy Phys., 2015, 7, (2015), front matter+19 pp · Zbl 1388.81472
[3] Aspinwall, P., Probing geometry with stability conditions, preprint
[4] Bak, A., The spectral construction for a (\(1, 8\))-polarized family of abelian varieties, preprint
[5] Ballard, M.; Dragos, D.; Favero, D.; Isik, M.; Katzarkov, L., On the derived categories of degree d hypersurface fibrations, preprint · Zbl 1423.14114
[6] Ballard, M.; Favero, D.; Katzarkov, L., Variation of geometric invariant theory quotients and derived categories, preprint
[7] Batyrev, V., Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Algebraic Geom., 3, 493-535, (1994) · Zbl 0829.14023
[8] Batyrev, V.; Borisov, L., Mirror duality and string-theoretic Hodge numbers, Invent. Math., 126, 1, 183-203, (1996) · Zbl 0872.14035
[9] Batyrev, V.; Borisov, L., Dual cones and mirror symmetry for generalized Calabi-Yau manifolds, (Mirror Symmetry, II, AMS/IP Stud. Adv. Math., vol. 1, (1997)), 71-86 · Zbl 0927.14019
[10] Batyrev, V.; Nill, B., Combinatorial aspects of mirror symmetry, (Integer Points in Polyhedra — Geometry, Number Theory, Representation Theory, Algebra, Optimization, Statistics, Contemp. Math., vol. 452, (2008)), 35-66 · Zbl 1161.14037
[11] Beauville, A., A Calabi-Yau threefold with non-abelian fundamental group, (New Trends in Algebraic Geometry, Warwick, 1996, London Math. Soc. Lecture Note Ser., vol. 264, (1999)), 13-17 · Zbl 0955.14029
[12] Berglund, P.; Hübsch, T., A generalized construction of mirror manifolds, Nuclear Phys. B, 393, 1, 377-391, (1993) · Zbl 1245.14039
[13] Borisov, L., Berglund-Hübsch mirror symmetry via vertex algebras, Comm. Math. Phys., 321, 1, 73-99, (2013) · Zbl 1317.17032
[14] Borisov, L., On stringy cohomology spaces, Duke Math. J., 163, 6, 1105-1126, (2014) · Zbl 1292.14029
[15] Borisov, L., Towards the mirror symmetry for Calabi-Yau complete intersections in Gorenstein toric Fano varieties
[16] Borisov, L.; Căldăraru, A., The pfaffian-Grassmannian derived equivalence, J. Algebraic Geom., 18, 2, 201-222, (2009) · Zbl 1181.14020
[17] Borisov, L.; Chen, L.; Smith, G., The orbifold Chow ring of toric Deligne-Mumford stacks, J. Amer. Math. Soc., 18, 1, 193-215, (2005) · Zbl 1178.14057
[18] Calabrese, J.; Thomas, R., Derived equivalent Calabi-Yau 3-folds from cubic 4-folds, Math. Ann., 365, 1-2, 155-172, (2016) · Zbl 1342.14036
[19] Căldăraru, A., Derived categories of twisted sheaves on Calabi-Yau manifolds, (2000), Cornell University, thesis
[20] Căldăraru, A., Derived categories of twisted sheaves on elliptic threefolds, J. Reine Angew. Math., 544, 161-179, (2002) · Zbl 0995.14012
[21] Căldăraru, A.; Distler, J.; Hellerman, S.; Pantev, T.; Sharpe, E., Non-birational twisted derived equivalences in abelian glsms, Comm. Math. Phys., 294, 3, 605-645, (2010) · Zbl 1231.14035
[22] Chiodo, A.; Ruan, Y., LG/CY correspondence: the state space isomorphism, Adv. Math., 227, 6, 2157-2188, (2011) · Zbl 1245.14038
[23] Clarke, P., A proof of the birationality of certain BHK-mirrors, Complex Manifolds, 1, 45-51, (2014) · Zbl 1320.32032
[24] Clarke, P., Birationality and Landau-Ginzburg models, Comm. Math. Phys., 353, 3, 1241-1260, (2017) · Zbl 1428.14074
[25] Cox, D.; Katz, S., (Mirror Symmetry and Algebraic Geometry, Mathematical Surveys and Monographs, vol. 68, (1999)), xxii+469 pp
[26] Efimov, A.; Positselski, L., Coherent analogues of matrix factorizations and relative singularity categories, Algebra Number Theory, 9, 5, 1159-1292, (2015) · Zbl 1333.14018
[27] Favero, D.; Kelly, T., Proof of a conjecture of Batyrev and nill, preprint · Zbl 1390.14124
[28] Favero, D.; Kelly, T., Derived categories of BHK mirrors, preprint
[29] Givental, A., Equivariant Gromov-Witten invariants, Int. Math. Res. Not. IMRN, 13, 613-663, (1996) · Zbl 0881.55006
[30] Griffiths, P.; Harris, J., Principles of algebraic geometry, Pure and Applied Mathematics, (1978), Wiley-Interscience [John Wiley & Sons] New York · Zbl 0408.14001
[31] Gross, M.; Popescu, S., Calabi-Yau threefolds and moduli of abelian surfaces. I, Compos. Math., 127, 2, 169-228, (2001) · Zbl 1063.14051
[32] Herbst, M.; Walcher, J., On the unipotence of autoequivalences of toric complete intersection Calabi-Yau categories, Math. Ann., 353, 3, 783-802, (2012) · Zbl 1248.14022
[33] Hosono, S.; Takagi, H., Mirror symmetry and projective geometry of reye congruences I, J. Algebraic Geom., 23, 2, 279-312, (2014) · Zbl 1298.14043
[34] Hosono, S.; Takagi, H., Double quintic symmetroids, reye congruences, and their derived equivalence, J. Differential Geom., 104, 3, 443-497, (2016) · Zbl 1364.32018
[35] Hua, Z., Classification of free actions on complete intersections of four quadrics, Adv. Theor. Math. Phys., 15, 4, 973-990, (2011) · Zbl 1252.14025
[36] Huybrechts, D., Fourier-Mukai transforms in algebraic geometry, Oxford Mathematical Monographs, (2006), Clarendon Press Oxford · Zbl 1095.14002
[37] Isik, M., Equivalence of the derived category of a variety with a singularity category, Int. Math. Res. Not. IMRN, 12, 2787-2808, (2013) · Zbl 1312.14052
[38] Kapranov, M., On the derived category and K-functor of coherent sheaves on intersections of quadrics, Math. USSR, Izv., 32, 1, 191, (1989) · Zbl 0679.14005
[39] Kelly, T., Berglund-Hübsch-krawitz mirrors via shioda maps, Adv. Theor. Math. Phys., 17, 6, 1425-1449, (2013) · Zbl 1316.14076
[40] Kontsevich, M., Homological algebra of mirror symmetry, (Proceedings of the International Congress of Mathematicians, vols. 1, 2, Zürich, 1994, (1994)), 120-139 · Zbl 0846.53021
[41] Krawitz, M., FJRW rings and Landau-Ginzburg mirror symmetry, (2010), University of Michigan, Thesis · Zbl 1250.81087
[42] Kuznetsov, A., Derived categories of quadric fibrations and intersections of quadrics, Adv. Math., 218, 5, 1340-1369, (2008) · Zbl 1168.14012
[43] Kuznetsov, A., Scheme of lines on a family of 2-dimensional quadrics: geometry and derived category, Math. Z., 276, 3-4, 655-672, (2014) · Zbl 1295.14018
[44] Kuznetsov, A., Semiorthogonal decompositions in algebraic geometry, preprint · Zbl 1373.18009
[45] Li, Z., On the birationality of complete intersections associated to nef-partitions, Adv. Math., 299, 71-107, (2016) · Zbl 1360.14040
[46] Lian, B.; Liu, K.; Yau, S.-T., Mirror principle. I, Asian J. Math., 1, 4, 729-763, (1997) · Zbl 0953.14026
[47] Mukai, S., Moduli of vector bundles on K3 surfaces, and symplectic manifolds, Sugaku Expositions, 1, 2, 138-174, (1988) · Zbl 0685.14021
[48] Orlov, D., Derived categories of coherent sheaves and triangulated categories of singularities, (Algebra, Arithmetic, and Geometry: in Honor of Yu.I. Manin., vol. II, Progr. Math., vol. 270, (2009)), 503-531 · Zbl 1200.18007
[49] Rødland, E., The pfaffian Calabi-Yau, its mirror, and their link to the Grassmannian \(G(2, 7)\), Compos. Math., 122, 2, 135-149, (2000) · Zbl 0974.14026
[50] Schnell, C., The fundamental group is not a derived invariant, (Derived Categories in Algebraic Geometry, EMS Ser. Congr. Rep., (2012), Eur. Math. Soc. Zürich), 279-285 · Zbl 1284.14024
[51] Shipman, I., A geometric approach to Orlov’s theorem, Compos. Math., 148, 5, 1365-1389, (2012) · Zbl 1253.14019
[52] Shoemaker, M., Birationality of berglund-Hübsch-krawitz mirrors, Comm. Math. Phys., 331, 2, 419-429, (2014) · Zbl 1395.14034
[53] Stapledon, A., New Calabi-Yau orbifolds with mirror Hodge diamonds, Adv. Math., 230, 4-6, 1557-1596, (2012) · Zbl 1266.14033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.