zbMATH — the first resource for mathematics

Robust disturbance rejection for uncertain fractional-order systems. (English) Zbl 1426.93193
Summary: This paper describes a disturbance rejection scheme that adopts equivalent-input-disturbance (EID) approach for uncertain fractional-order (FO) systems. An EID estimator that contains an FO observer is designed to actively compensate for the disturbances and process modeling uncertainties without requiring their prior knowledge. Under the construction of the FO control system, a robust stability condition and the parameters of the controller are derived using a linear matrix inequality based method. Finally, numerical and practical examples are illustrated to demonstrate the validity and superiority of the method.

93C73 Perturbations in control/observation systems
34A08 Fractional ordinary differential equations and fractional differential inclusions
93B07 Observability
93D09 Robust stability
Full Text: DOI
[1] Chen, Y. Q., Ubiquitous fractional order controls, 19-21, (2006)
[2] Matignon, D., Stability results for fractional differential equations with applications to control processing, IMACS, 963-968, (1996), IEEE-SMC Lille, France
[3] Bao, H. B.; Cao, J. D., Projective synchronization of fractional-order memristor-based neural networks, Neural Netw., 63, 1-9, (2015) · Zbl 1323.93036
[4] Bao, H. B.; Ju, H. P.; Cao, J. D., Adaptive synchronization of fractional-order memristor-based neural networks with time delay, Nonlinear Dyn., 82, 1343-1354, (2015) · Zbl 1348.93159
[5] Bao, H. B.; Ju, H. P.; Cao, J. D., Synchronization of Fractional-Order Complex-Valued Neural Networks with Time Delay, (2016), Elsevier Science Ltd
[6] Wang, J. F., Control Performance Analysis for Fractional Order Systems, (2010), Publishing House of Electronics Industry Beijing
[7] Podlubny, I., Fractional-order systems and PID controllers, IEEE Trans. Autom. Control, 44, 208-214, (1999) · Zbl 1056.93542
[8] Oustaloup, A.; Bansard, M., First generation CRONE control, Proceedings of Conference on System, Man and Cybernetic, Systems Engineering in the Service of Humans, 130-135, (1993)
[9] Sabatier, J.; Moze, M.; Farges, C., LMI stability conditions for fractional order systems, Comput. Math. Appl., 59, 1594-1609, (2010) · Zbl 1189.34020
[10] Trigeassou, J. C.; Maamri, N.; Sabatier, J.; Oustaloup, A., A Lyapunov approach to the stability of fractional differential equations, Signal Process., 91, 437-445, (2011) · Zbl 1203.94059
[11] Lu, J. G.; Chen, G. R., Robust stability and stabilization of fractional order interval systems: an LMI approach, IEEE Trans. Autom. Control, 54, 1294-1300, (2009) · Zbl 1367.93472
[12] Yang, X.; Li, C.; Song, Q., Mittag-Leffler stability analysis on variable-time impulsive fractional-order neural networks, Neurocomputing, 207, 276-286, (2016)
[13] Yang, X.; Li, C.; Huang, T., Mittag-Leffler stability analysis of nonlinear fractional-order systems with impulses, Appl. Math. Comput., 293, 416-422, (2017) · Zbl 1411.34023
[14] Mujumdar, A.; Tamhane, B.; Kurode, S., Observer-based sliding mode control for a class of noncommensurate fractional-order systems, IEEE/ASME Trans. Mechatronics, 20, 2504-2512, (2015)
[15] Hosseinnia, S. H.; Ghaderi, R.; Ranjbar, A. N.; Mahmoudian, M.; Momani, S., Sliding mode synchronization of an uncertain fractional order chaotic system, Comput. Math. Appl., 59, 1637-1643, (2010) · Zbl 1189.34011
[16] Lan, Y. H.; Gu, H. B.; Chen, C. X.; Zhou, Y.; Luo, Y. P., An indirect Lyapunov approach to the observer-based robust control for fractional-order complex dynamic networks, Neurocomputing, 136, 235-242, (2014)
[17] Lan, Y. H.; Huang, H. X.; Zhou, Y., Observer-based robust control of a (1 ≤ a ≤ 2) fractional-order uncertain systems: a linear matrix inequality approach, IET Control Theory Appl., 6, 229-234, (2012)
[18] Wei, Y.; Chen, Y.; Liang, S.; Wang, Y., A novel algorithm on adaptive backstepping control of fractional order systems, Neurocomputing, 165, 395-402, (2015)
[19] Gao, Z., Active disturbance rejection control for nonlinear fractional-order systems, Int. J. Robust Nonlinear Control, 26, 876-892, (2015) · Zbl 1333.93089
[20] Gao, Z.; Liao, X., Active disturbance rejection control for synchronization of different fractional-order chaotic systems, Intelligent Control and Automation, 2699-2704, (2015), IEEE Shenyang, China
[21] Alagoz, B. B.; Deniz, F. N.; Keles, C., Disturbance rejection performance analyses of closed loop control systems by reference to disturbance ratio, ISA Trans., 55, 63-71, (2015)
[22] Yang, X.; Li, C.; Huang, T., Quasi-uniform synchronization of fractional-order memristor-based neural networks with delay, Neurocomputing, 234, 205-215, (2017)
[23] Li, M.; Li, D.; Wang, J.; Zhao, C., Active disturbance rejection control for fractional-order system, ISA Trans., 52, 365-374, (2013)
[24] Li, D.; Ding, P.; Gao, Z., Fractional active disturbance rejection control, ISA Trans., 62, 109-119, (2016)
[25] Fedele, G.; Ferrise, A., Periodic disturbance rejection for fractional-order dynamical systems, Fract. Calculus Appl. Anal., 18, 603-620, (2015) · Zbl 1320.93054
[26] Liu, R. J.; Liu, G. P.; Wu, M.; Xiao, F. C.; She, J., Robust disturbance rejection based on the equivalent input disturbance approach, IET Control Theory Appl., 7, 1261-1268, (2013)
[27] Liu, R. J.; Liu, G. P.; Wu, M., Robust disturbance rejection in modified repetitive control system, Syst. Control Lett., 70, 100-108, (2014) · Zbl 1290.93055
[28] Chilali, M.; Gahinet, P.; Apkarian, P., Robust pole pl LMI regions, IEEE Trans. Autom. Control, 44, 2257-2270, (1999) · Zbl 1136.93352
[29] Ho, D. W.C.; Lu, G., Robust stabilization for a class of discrete-time nonlinear system via output feedback: the unified LMI approach, Int. J. Control, 76, 105-115, (2003) · Zbl 1026.93048
[30] I., X. L.; De Souza, C. E., Delay-dependent robust stability and stabilization of uncertain linear delay systems: a linear matrix inequality approach, IEEE. Trans. Autom. Control, 42, 1144-1148, (1997) · Zbl 0889.93050
[31] Khargonek, P. P.; Petersen, I. R.; Zhou, K., Robust stabilization of uncertain linear systems: quadratic stabilizability and h∞ control theory, IEEE. Trans. Autom. Control, 35, 356-361, (1990) · Zbl 0707.93060
[32] Ibrir, S.; Bettayeb, M., New sufficient conditions for observer-based control of fractional-order uncertain systems, Automatica, 59, 216-223, (2015) · Zbl 1326.93104
[33] Monje, C. A.; Chen, Y. Q.; Vinagre, B. M.; Xue, D. Y.; Feliu, V., Fractional-Order Systems and Controls, (2010), Springer London
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.