×

A Pontryaghin maximum principle approach for the optimization of dividends/consumption of spectrally negative Markov processes, until a generalized draw-down time. (English) Zbl 1426.91292

Summary: The first motivation of our paper is to explore further the idea that, in risk control problems, it may be profitable to base decisions both on the position of the underlying process \(X_t\) and on its supremum \(\overline{X}_t:=\sup_{0\leq s\leq t} X_s\). Strongly connected to Azema-Yor/generalized draw-down/trailing stop time this framework provides a natural unification of draw-down and classic first passage times. We illustrate here the potential of this unified framework by solving a variation of the De Finetti problem of maximizing expected discounted cumulative dividends/consumption gained under a barrier policy, until an optimally chosen Azema-Yor time, with a general spectrally negative Markov model. While previously studied cases of this problem assumed either Lévy or diffusion models, and the draw-down function to be fixed, we describe, for a general spectrally negative Markov model, not only the optimal barrier but also the optimal draw-down function. This is achieved by solving a variational problem tackled by Pontryaghin’s maximum principle. As a by-product we show that in the Lévy case the classic first passage solution is indeed optimal; in the diffusion case, we obtain the optimality equations, but the behavior of associated solutions for further explicit models and the question of whether they do better than the classic solution is left for future work. Instead, we illustrate the novelty by a toy example, with a conveniently chosen scale-like function.

MSC:

91G50 Corporate finance (dividends, real options, etc.)
60G51 Processes with independent increments; Lévy processes
60J70 Applications of Brownian motions and diffusion theory (population genetics, absorption problems, etc.)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Abundo, M., The arctangent law for a certain random time related to one-dimensional diffusions, Stochastic Analysis and Applications, 36, 1, 181-187 (2018) · Zbl 1382.60102
[2] Albrecher, H. & Cani, A. (2017). Risk theory with affine dividend payment strategies. In C. Elsholtz and P. Grabner, eds., Number Theory - Diophantine Problems, Uniform Distribution and Applications. Cham: Springer. · Zbl 1415.91147
[3] Alvarez, L. H. R. & Hening, A. (2018). Optimal sustainable harvesting of populations in random environments. arXiv preprint arXiv:1807.02464. · Zbl 1492.91229
[4] Albrecher, H.; Ivanovs, J., Linking dividends and capital injections – a probabilistic approach, Scandinavian Actuarial Journal, 2018, 1, 76-83 (2018) · Zbl 1416.91146
[5] Avram, F.; Kyprianou, A.; Pistorius, M., Exit problems for spectrally negative Lévy processes and applications to (Canadized) Russian options, The Annals of Applied Probability, 14, 1, 215-238 (2004) · Zbl 1042.60023
[6] Avram, F., Li, B. & Li, S. (2018). General drawdown of general tax model in a time-homogeneous Markov framework. arXiv preprint, arXiv:1810.02079. · Zbl 1475.60076
[7] Avram, F.; Palmowski, Z.; Pistorius, M. R., On the optimal dividend problem for a spectrally negative Lévy process, The Annals of Applied Probability, 17, 1, 156-180 (2007) · Zbl 1136.60032
[8] Alvarez, L. H. R.; Shepp, L. A., Optimal harvesting of stochastically fluctuating populations, Journal of Mathematical Biology, 37, 2, 155-177 (1998) · Zbl 0940.92029
[9] Avram, F., Linh Vu, N. & Zhou, X. (2017). On draw-down stopping times for taxed spectrally negative lévy processes. ArXiv. · Zbl 1395.91245
[10] Azéma, J. & Yor, M. (1979). Une solution simple au probleme de Skorokhod. In C. Dellacherie, P.A. Meyer and M. Weil, eds., Séminaire de Probabilités XIII. Lecture Notes in Mathematics, Vol. 721. Berlin, Heidelberg: Springer. p. 90-115. · Zbl 0414.60055
[11] Bertoin, J., Lévy Processes, volume 121 (1998), Cambridge: Cambridge university press, Cambridge · Zbl 0938.60005
[12] Carr, P., First-order calculus and option pricing, Journal of Financial Engineering, 1, 1 (2014)
[13] Czarna, I., Kaszubowski, A., Li, S. & Palmowski, Z. (2018). Fluctuation identities for omega-killed markov additive processes and dividend problem. arXiv preprint arXiv:1806.08102. · Zbl 1475.60078
[14] Chan, T.; Kyprianou, A. E.; Savov, M., Smoothness of scale functions for spectrally negative lévy processes, Probability Theory and Related Fields, 150, 3-4, 691-708 (2011) · Zbl 1259.60050
[15] Czarna, I., Pérez, J., Rolski, T. & Yamazaki, K. (2017). Fluctuation theory for level-dependent l\'evy risk processes. arXiv preprint arXiv:1712.00050. · Zbl 1448.60103
[16] De Finetti, B. (1957). Su una impostazione alternativa della teoria collettiva del rischio. In P.F. Mallon, ed., Transactions of the XVth international congress of Actuaries, Vol. 2. New York. p. 433-443.
[17] Doney, R. A. (2005). Some excursion calculations for spectrally one-sided lévy processes. In M. Émery, M. Ledoux and M. Yor, eds., Séminaire de Probabilités XXXVIII. Lecture Notes in Mathematics (Séminaire de Probabilités), Vol. 1857. Berlin, Heidelberg: Springer. · Zbl 1068.60073
[18] Dubins, L. E.; Shepp, L. A.; Shiryaev, A. N., Optimal stopping rules and maximal inequalities for bessel processes, Theory of Probability & Its Applications, 38, 2, 226-261 (1994)
[19] Hobson, D., Optimal stopping of the maximum process: a converse to the results of peskir, Stochastics An International Journal of Probability and Stochastic Processes, 79, 1-2, 85-102 (2007) · Zbl 1128.60029
[20] Jacobsen, M.; Jensen, A. T., Exit times for a class of piecewise exponential markov processes with two-sided jumps, Stochastic processes and their applications, 117, 9, 1330-1356 (2007) · Zbl 1125.60080
[21] Kyprianou, A. E.; Palmowski, Z., Distributional study of de finetti’s dividend problem for a general lévy insurance risk process, Journal of Applied Probability, 44, 2, 428-443 (2007) · Zbl 1137.60047
[22] Kyprianou, A., Fluctuations of Lévy Processes with Applications: Introductory Lectures (2014), Berlin, Heidelberg: Springer Science & Business Media, Berlin, Heidelberg · Zbl 1384.60003
[23] Lehoczky, J. P., Formulas for stopped diffusion processes with stopping times based on the maximum, The Annals of Probability, 5, 4, 601-607 (1977) · Zbl 0367.60093
[24] Landriault, D.; Li, B.; Zhang, H., On magnitude, asymptotics and duration of drawdowns for lévy models, Bernoulli, 23, 1, 432-458 (2017) · Zbl 1407.60067
[25] Landriault, D.; Li, B.; Zhang, H., A unified approach for drawdown (drawup) of time-homogeneous markov processes, Journal of Applied Probability, 54, 2, 603-626 (2017) · Zbl 1400.60044
[26] Li, B., Vu, L. & Zhou, X. (2017). General drawdown times. preprint.
[27] Mijatovic, A.; Pistorius, M. R., On the drawdown of completely asymmetric lévy processes, Stochastic Processes and their Applications, 122, 11, 3812-3836 (2012) · Zbl 1252.60046
[28] Page, E. S., Continuous inspection schemes, Biometrika, 41, 1-2, 100-115 (1954) · Zbl 0056.38002
[29] Peskir, G., Optimal stopping of the maximum process: the maximality principle, Annals of Probability, 26, 4, 1614-1640 (1998) · Zbl 0935.60025
[30] Pontryagin, L. S.; Boltyanskii, V. G.; Gamkrelidze, R. V.; Mishechenko, E. F., The Mathematical Theory of Optimal Processes (1962), New York: John Wiley & Sons, New York · Zbl 0102.32001
[31] Shreve, S. E.; Lehoczky, J. P.; Gaver, D. P., Optimal consumption for general diffusions with absorbing and reflecting barriers, SIAM Journal on Control and Optimization, 22, 1, 55-75 (1984) · Zbl 0535.93071
[32] Shepp, L.; Shiryaev, A. N., The russian option: reduced regret, The Annals of Applied Probability, 3, 3, 631-640 (1993) · Zbl 0783.90011
[33] Shiryaev, A.; Xu, P.; Zhou, X. Y., Thou shalt buy and hold, Quantitative finance, 8, 8, 765-776 (2008) · Zbl 1154.91478
[34] Taylor, H. M., A stopped brownian motion formula, The Annals of Probability, 3, 2, 234-246 (1975) · Zbl 0303.60072
[35] Wang, W.; Zhou, X., General draw-down based de finetti optimization for spectrally negative lévy risk processes, Journal of Applied Probability, 55, 2, 513-542 (2018) · Zbl 1396.91314
[36] Wang, W. & Zhang, Z. (2019). Optimal loss-carry-forward taxation for lévy risk processes stopped at general draw-down time. arXiv preprint arXiv:1904.08029. · Zbl 1427.60084
[37] Zhang, H., Stochastic Drawdowns, volume 2 (2018), World Scientific
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.