×

zbMATH — the first resource for mathematics

A not-a-knot meshless method using radial basis functions and predictor-corrector scheme to the numerical solution of improved Boussinesq equation. (English) Zbl 1426.76569
Summary: A numerical simulation of the improved Boussinesq (IBq) equation is obtained using collocation and approximating the solution by radial basis functions (RBFs) based on the third-order time discretization. To avoid solving the nonlinear system, a predictor-corrector scheme is proposed and the Not-a-Knot method is used to improve the accuracy in the boundary. The method is tested on two problems taken from the literature: propagation of a solitary wave and interaction of two solitary waves. The results of numerical experiments are compared with analytical solution and with those of other recently published methods to confirm the accuracy and efficiency of the new scheme presented in this paper.

MSC:
76M25 Other numerical methods (fluid mechanics) (MSC2010)
76B25 Solitary waves for incompressible inviscid fluids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Lin, Q.; Wu, Y.H.; Loxton, R.; Lai, S., J. comput. appl. math., 224, 658, (2009)
[2] Biswas, A.; Milovic, D.; Ranasinghe, A., Commun. nonlinear sci. numer. simul., 14, 3738, (2009)
[3] Bratsos, A.G.; Natsis, D.G., J. appl. math. comput., 21, 23, (2008)
[4] Noubissie, S.; Kraenkel, R.A.; Waofo, P., Commun. nonlinear sci. numer. simul., 14, 51, (2009)
[5] Dehghan, M.; Shakeri, F., J. porous media, 11, 765, (2008)
[6] Kalantarov, V.K.; Ladyzhenskaya, O.A., J. sov. math., 10, 53, (1978)
[7] Zhijian, Y., Math. methods appl. sci., 21, 1467, (1998)
[8] Natsis, D.G., Numer. algorithms, 44, 281, (2007)
[9] Bratsos, A.G., Comput. methods appl. mech. engrg., 157, 33, (1998)
[10] Abassy, T.A.; El-Tawil, M.A.; Saleh, H.K., Chaos solitons fractals, 32, 1008, (2007)
[11] Ablowitz, M.J.; Segur, H., Solitons and the inverse scattering transform, (1981), SIAM Philadelphia, PA · Zbl 0299.35076
[12] Hirota, R., Direct methods in soliton theory, () · Zbl 0124.21603
[13] Hirota, R., J. math. phys., 14, 805, (1973)
[14] Hirota, R., J. math. phys., 14, 7, 810, (1973)
[15] Kabstov, O.V., J. appl. mech. tech. phys., 39, 3, 398, (1998)
[16] Andreev, V.K.; Kabstov, O.V.; Pukhnachov, V.V.; Rodionov, A.A., Applications of group-theoretical methods in hydrodynamics, (1998), Kluwer Academic Publishers Boston · Zbl 0912.35001
[17] Wazwaz, A.M., Chaos solitons fractals, 12, 1549, (2001)
[18] Helal, M.A., Chaos solitons fractals, 13, 1917, (2002)
[19] Ismail, M.S.; Biswas, A., Appl. math. comput., 216, 1673, (2010)
[20] Wazwaz, A.M., Commun. nonlinear sci. numer. simul., 13, 889, (2008)
[21] Bogolubsky, I.L., Comput. phys. comm., 13, 149, (1977)
[22] Bratsos, A.G., Chaos solitons fractals, 40, 2083, (2009)
[23] Bratsos, A.G., Phys. lett. A, 370, 145, (2007) · Zbl 1209.65085
[24] Wazwaz, A.M., Comput. math. appl., 49, 563, (2005)
[25] Iskandar, L.; Jain, P.C., Proc. Indian acad. sci. math. sci., 89, 171, (1980)
[26] Inç, M.; Evans, D.J., Int. J. comput. math., 81, 313, (2004)
[27] El-Zoheiry, H., Chaos solitons fractals, 14, 377, (2002)
[28] Irk, D.; Daǧ, I., Numer. methods partial differential equations, (2009)
[29] Dehghan, M., Math. comput. simul., 71, 16, (2006)
[30] Dehghan, M., Numer. methods partial differential equations, 21, 24, (2005)
[31] Dehghan, M., Math. comput. modelling, 41, 196, (2005)
[32] Dehghan, M., Appl. numer. math., 52, 39, (2005)
[33] Ling, L.; Kansa, E.J., Adv. comput. math., 23, 31, (2005)
[34] Kansa, E.J., Comput. math. appl., 19, 127, (1990)
[35] Kansa, E.J., Comput. math. appl., 19, 147, (1990)
[36] Hardy, R.L., Comput. math. appl., 10, 163, (1990)
[37] Tatari, M.; Dehghan, M., Appl. math. model., 33, 1729, (2009)
[38] Cheng, A.H.D.; Golberg, M.A.; Kansa, E.J.; Zammito, T., Numer. methods partial differential equations, 19, 571, (2003) · Zbl 1031.65121
[39] Fedoseyev, A.I.; Friedman, M.J.; Kansa, E.J., Comput. math. appl., 43, 3-5, 439, (2002)
[40] Brown, D.; Ling, L.; Kansa, E.J.; Levesley, J., Eng. anal. bound. elem., 29, 343, (2005)
[41] Schaback, R., Adv. comput. math., 3, 251, (1995)
[42] Schaback, R., Multivariate interpolation and approximation by translates of a basis function, () · Zbl 1139.41301
[43] Schaback, R., On the efficiency of interpolation by radial basis functions, (), 309 · Zbl 0937.65013
[44] Dehghan, M.; Mirzaei, D., Appl. numer. math., 59, 1043, (2009)
[45] Demirkaya, G.; Wafo Soh, C.; Ilegbusi, O.J., Appl. math. model., 32, 1848, (2008)
[46] Zhang, Y., Appl. math. comput., 185, 614, (2007)
[47] Hon, Y.C.; Schaback, R., Appl. math. comput., 119, 177, (2001)
[48] Duan, Y., Comput. math. appl., 55, 66, (2008)
[49] Wendland, H., Math. comput., 68, 1521, (1999)
[50] Fasshauer, G.E., Solving partial differential equations by collocation with radial basis functions, () · Zbl 0938.65140
[51] Wu, Z., Approx. theory, 8, 2, 1, (1992)
[52] Wu, Z., Solving PDE with radial basis function and the error estimation, ()
[53] Schaback, R.; Franke, C., Adv. comput. math., 8, 381, (1998)
[54] Fedoseyev, A.I.; Friedman, M.J.; Kansa, E.J., Int. J. bifur. chaos, 10, 2, 1, (2000)
[55] La Rocca, A.; Rosales, A.H.; Power, H., Eng. anal. bound. elem., 29, 359, (2005)
[56] Ferreira, A.J.M.; Fasshauer, G.E., Comput. methods appl. mech. engrg., 196, 134, (2006)
[57] Moroney, T.J.; Turner, I.W., Appl. math. model., 30, 1118, (2006)
[58] Dehghan, M.; Shokri, A., Numer. algorithms, 52, 461, (2009)
[59] Sarra, S.A., Appl. numer. math., 54, 79, (2005)
[60] Carlson, R.E.; Foley, T.A., Comput. math. appl., 21, 29, (1991)
[61] Rippa, S., Adv. comput. math., 11, 193, (1999)
[62] Fornberg, B.; Wright, G., Comput. math. appl., 16, 497, (2004)
[63] Kansa, E.J.; Hon, Y.C., Comput. math. appl., 39, 123, (2000)
[64] Sarra, S.A.; Sturgill, Derek, Eng. anal. bound. elem., 33, 1239, (2009)
[65] Fornberg, B.; Driscoll, T.A.; Wright, G.; Charles, R., Comput. math. appl., 43, 473, (2002)
[66] Libre, N.A.; Emdadi, A.; Kansa, E.J.; Shekarchi, M.; Rahimian, M., Eng. anal. bound. elem., 33, 901, (2009)
[67] Buhmann, M.D., Math. comput., 64, 212, 1611, (1995)
[68] Buhmann, M.D.; Micchelli, C.A., Comput. math. appl., 43, 12, 21, (1992)
[69] Chui, C.K.; Stoeckler, J.; Ward, J.D., Adv. comput. math., 5, 95, (1996)
[70] Chui, C.K.; Ward, J.D.; Jetter, K.; Stockler, J., Appl. comput. harmon. anal., 3, 254, (1996)
[71] Yun-Xin, Z.; Yong-Ji, T., Appl. math. comput., 174, 700, (2006)
[72] Zhou, X.; Hon, Y.C.; Li, J., Appl. numer. math., 44, 241, (2003)
[73] Ling, L.; Opfer, R.; Schaback, R., Eng. anal. bound. elem., 30, 247, (2006)
[74] Divo, E.; Kassab, A.J., Eng. anal. bound. elem., 29, 136, (2005)
[75] Ling, L.; Kansa, E.J., Math. comput. modelling, 40, 1413, (2004)
[76] Li, J.; Hon, Y.C., Numer. methods partial differential equations, 20, 450, (2004) · Zbl 1048.65124
[77] Duan, Y.; Tang, P.F.; Huang, T.Z., Eng. anal. bound. elem., 33, 1284, (2009)
[78] Lee, C.F.; Ling, L.; Schaback, R., Adv. comput. math., 30, 339, (2009)
[79] Ling, L.; Schaback, R., SIAM J. numer. anal., 46, 1097, (2008)
[80] Adibi, H.; Eshaghi, J., Appl. math. comput., 186, 246, (2007)
[81] Duan, Y.; Tang, P.F.; Huang, T.Z.; Lai, S.J., Comput. phys. comm., 180, 209, (2009)
[82] Duan, Y.; Tan, Y.J., Appl. math. comput., 172, 141, (2006)
[83] Dehghan, M.; Shokri, A., Math. comput. simul., 79, 700, (2008)
[84] Dehghan, M.; Shokri, A., J. comput. appl. math., 230, 400, (2009)
[85] Dehghan, M.; Ghesmati, A., Eng. anal. bound. elem., 34, 51, (2010)
[86] Dehghan, M., Chaos solitons fractals, 32, 661, (2007)
[87] Dehghan, M., Numer. methods partial differential equations, 22, 220, (2006)
[88] Dehghan, M., Numer. methods partial differential equations, 21, 611, (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.