×

zbMATH — the first resource for mathematics

A new exceptional points method with application to cell-centered Lagrangian schemes and curved meshes. (English) Zbl 1426.76350
Summary: The aim of this paper is the numerical simulation of compressible hydrodynamic strong implosions, which take place for instance in Inertial Confinement Fusion. It focuses in particular on two crucial issues, for such calculations: very low CFL number at the implosion center and approximation error on the initial geometry. Thus, we propose an exceptional points method, which is translation invariant and suitable to curved meshes. This method is designed for cell-centered Lagrangian schemes (GLACE, EUCCLHYD). Several numerical examples on significant test cases are presented to show the relevance of our approach.

MSC:
76M12 Finite volume methods applied to problems in fluid mechanics
76L05 Shock waves and blast waves in fluid mechanics
76N15 Gas dynamics (general theory)
Software:
CAVEAT; MPDATA
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] F.L. Addessio, J.R. Baugardner, J.K. Dukowicz, N.L. Johnson, B.A. Kashiwa, R.M. Rauenzahn, C. Zemach, CAVEAT: a computer code for fluid dynamics problems with large distortion and internal slip, Los Alamos National Laboratory LA-10613, 1990.
[2] Benson, D.J., Computational methods in Lagrangian and Eulerian hydrocodes, Comput. method appl. mesh. eng., 99, 235-394, (1992) · Zbl 0763.73052
[3] Breil, J.; Hallo, L.; Maire, P.H.; Olazabal-Loumé, M., Hydrodynamic instabilities in axisymmetric geometry self-similar models and numerical simulations, Laser part. beams, 23, 155-160, (2005)
[4] J. Campbell, M.J. Shashkov, The compatible Lagrangian hydrodynamics algorithm on unstructured grids, Los Alamos National Labs, LA-UR-00-323, 2000.
[5] Caramana, E.J.; Shashkov, M.J.; Whalen, P.P., Formulations of artificial viscosity for multidimensional shock wave computations, J. comput. phys., 144, 70-97, (1998) · Zbl 1392.76041
[6] Caramana, E.J.; Burton, D.E.; Shashkov, M.J.; Whalen, P.P., The construction of compatible hydrodynamics algorithms utilizing conservation of total energy, J. comput. phys., 146, 227-262, (1998) · Zbl 0931.76080
[7] Caramana, E.J.; Roulscup, C.L.; Burton, D.E., A compatible, energy and symmetry preserving Lagrangian hydrodynamics algorithm in three-dimensional Cartesian geometry, J. comput. phys., 157, 89-119, (2000) · Zbl 0961.76049
[8] Carré, G.; Del Pino, S.; Després, B.; Labourasse, E., A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension, J. comput. phys., 228, 5160-5183, (2009) · Zbl 1168.76029
[9] Cheng, J.; Shu, C.W., A high order ENO conservative Lagrangian type scheme for the compressible Euler equations, J. comput. phys., 227, 1567-1596, (2007) · Zbl 1126.76035
[10] R.B. Christensen, Godunov methods on a staggered mesh, an improved artificial viscosity, Tech. Rep. UCRL-JC 105269 LLNL, 1990.
[11] Del Pino, S., A curvilinear finite-volume method to solve compressible gas dynamics in semi-Lagrangian coordinates, Comp. rend. acad. sci., 348, 1027-1032, (2010) · Zbl 1426.76652
[12] Després, B., Weak consistency of the cell centered Lagrangian GLACE scheme on general meshes in any dimension, Comput. methods appl. mech. engrg, 199, 2669-2679, (2010) · Zbl 1231.76177
[13] Després, B.; Mazeran, C., Symmetrization of Lagrangian gas dynamics and Lagrangian solvers, Comp. rend. acad. sci. (Paris), 331, 475-480, (2003) · Zbl 1293.76089
[14] Després, B.; Mazeran, C., Lagrangian gas dynamics in 2D and Lagrangian systems, Arch. rat. mech. anal., 178, 327-372, (2005) · Zbl 1096.76046
[15] Dobrev, V.A.; Ellis, T.E.; Kolev, T.V.; Rieben, R.N., Curvilinear finite elements for Lagrangian hydrodynamics, Int. J. numer. methods fluids, 65, 11-12, 1295-1310, (2011) · Zbl 1255.76075
[16] Gal-Chen, T.; Somerville, R.C.J., On the use of a coordinate transformation for the solution of the Navier-Stokes equations, J. comput. phys, 17, 209-228, (1975) · Zbl 0297.76020
[17] Godunov, S., A difference scheme for numerical computation of discontinuous solution of hydrodynamic equations, Math.sib., 47, 271-306, (1959) · Zbl 0171.46204
[18] Godunov, S., Reminiscences about difference schemes, J. comput. phys., 153, 6-25, (1999) · Zbl 0936.65106
[19] Kidder, R.E., Laser-driven compression of hollow shells: power requirements and stability imitations, Nucl. fusion, 1, 3-14, (1976)
[20] Ledoux, F.; Weill, J.C.; Bertrand, Y., Definition of a generic mesh data structure in the high performance computing context, Developments and applications in engineering computational technology, vol. 26, (2010), Saxe-Coburg Publications, pp. 49-80
[21] Liu, W.; Cheng, J.; Shu, C.W., High order conservative Lagrangian schemes with lax – wendroff type time discretization for the compressible Euler equations, J. comput. phys., 228, 8872-8891, (2009) · Zbl 1287.76181
[22] Loubère, R.; Caramana, E.R., The force/work differencing of exceptional points in the discrete, compatible formulation of Lagrangian hydrodynamics, J. comput. phys., 216, 1-18, (2006) · Zbl 1173.76389
[23] Kluth, G.; Després, B., Discretization of hyperelasticity on unstructured mesh with a cell-centered Lagrangian scheme, J. comput. phys., 229, 9092-9118, (2010) · Zbl 1427.74029
[24] Margolin, L.; Shashkov, M., Using a curvilinear grid to construct symmetry-preserving discretizations for Lagrangian gas dynamics, J. comput. phys., 149, 389-417, (1998) · Zbl 0936.76057
[25] Maire, P.H., A high-order one-step sub-cell force-based discretization for cell-centered Lagrangian hydrodynamics on polygonal grids, Comput. fluids, 46, 1, 341-347, (2011) · Zbl 1433.76137
[26] P.H. Maire, Contribution to the numerical modeling of Inertial Confinement Fusion, Habilitation à diriger des recherches, Bordeaux University, 2011. <http://tel.archives-ouvertes.fr/docs/00/58/97/58/PDF/hdr_main.pdf>.
[27] Maire, P.H.; Nkonga, B., Multi-scale Godunov-type method for cell-centered discrete Lagrangian hydrodynamics, J. comput. phys., 228, 799-821, (2009) · Zbl 1156.76039
[28] Maire, P.H., A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes, J. comput. phys., 228, 2391-2425, (2009) · Zbl 1156.76434
[29] Maire, P.H.; Abgrall, R.; Breil, J.; Ovadia, J., A cell-centered Lagrangian scheme for 2D compressible flow problems, SIAM J. sci. comput., 29, 1781-1824, (2007) · Zbl 1251.76028
[30] von Neumann, J.; Richtmyer, R.D., A method for the calculation of hydrodynamics shocks, J. appl. phys., 21, 232-237, (1950) · Zbl 0037.12002
[31] Noh, W.F., Errors for calculations of strong shocks using artificial viscosity and an artificial heat, J. comput. phys., 72, 78-120, (1987) · Zbl 0619.76091
[32] B. Scheurer, Quelques schémas numériques pour l’hydrodynamique Lagrangienne, Technical report, Commissariat à l’Énergie Atomique, CEA-R-5942, 2000.
[33] Scovazzi, G.; Christon, M.A.; Hugues, T.J.R.; Shadid, J.N., Stabilized shock hydrodynamics: I. A Lagrangian method, Comput. methods appl. mech. eng., 196, 4-6, 923-966, (2007) · Zbl 1120.76334
[34] Scovazzi, G., Stabilized shock hydrodynamics: II. design and physical interpretation of the SUPG operator for Lagrangian computations, Comput. methods appl. mech. eng., 196, 4-6, 967-978, (2007) · Zbl 1120.76332
[35] Scovazzi, G., A discourse on Galilean invariance, SUPG stabilization, and the variational multiscale framework, Comput. methods appl. mech. eng., 54, 6-8, 1108-1132, (2007) · Zbl 1120.76333
[36] Scovazzi, G., Galilean invariance and stabilized methods for compressible flows, Int. J. numer. methods fluids, 54, 6-8, 757-778, (2007) · Zbl 1207.76094
[37] Scovazzi, G.; Love, E.; Shashkov, M.J., Multi-scale Lagrangian shock hydrodynamics on Q1/P0 finite elements: theoretical framework and two-dimensional computations, Comput. methods appl. mech. eng., 197, 1056-1079, (2008) · Zbl 1169.76396
[38] Scovazzi, G., Discourse on Galilean invariance, SUPG stabilization, and the variational multiscale framework, Comput. methods appl. mech. eng., 54, 6-8, 1108-1132, (2007) · Zbl 1120.76333
[39] Smolarkiewicz, P.K.; Margolin, L.G., MPDATA: a finite-difference solver for geophysical flows, J. comput. phys., 140, 2, 459-480, (1998) · Zbl 0935.76064
[40] Sod, G.A., A survey of finite difference methods for systems of nonlinear conservation laws, J. comput. phys., 27, 1-31, (1978) · Zbl 0387.76063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.