×

A discontinuous/continuous low order finite element shallow water model on the sphere. (English) Zbl 1426.76252

Summary: We study the applicability of a new finite element in atmosphere and ocean modeling. The finite element under investigation combines a second order continuous representation for the scalar field with a first order discontinuous representation for the velocity field and is therefore different from continuous and discontinuous Galerkin finite element approaches. The specific choice of low order approximation spaces is attractive because it satisfies the Ladyzhenskaya – Babuska – Brezzi condition and is, at the same time, able to represent the crucially important geostrophic balance.
The finite element is used to solve the viscous and inviscid shallow water equations on a rotating sphere. We introduce the spherical geometry via a stereographic projection. The projection leads to a manageable number of additional terms, the associated scaling factors can be exactly represented by second order polynomials.
We perform numerical experiments considering steady and unsteady zonal flow, flow over topography, and an unstable zonal jet stream. For ocean applications, the wind driven Stommel gyre is simulated. The experiments are performed on icosahedral geodesic grids and analyzed with respect to convergence rates, conservation properties, and energy and enstrophy spectra. The results match quite well with results published in the literature and encourage further investigation of this type of element for three-dimensional atmosphere/ocean modeling.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76U05 General theory of rotating fluids
86A05 Hydrology, hydrography, oceanography

Software:

chammp
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Baumgardner, John R.; Frederickson, Paul O., Icosahedral discretization of the two-sphere, SIAM Journal on Numerical Analysis, 22, 6, 1107-1115 (1985) · Zbl 0601.65084
[2] Browning, G. L.; Hack, J. J.; Swarztrauber, P. N., A comparison of three numerical methods for solving differential equations on the sphere, Monthly Weather Review, 117, 5, 1058-1075 (1989)
[3] Bernard, P.-E.; Remacle, J.-F.; Comblen, R.; Legat, V.; Hillewaert, K., High-order discontinuous Galerkin schemes on general 2d manifolds applied to the shallow water equations, Journal of Computational Physics, 228, 17, 6514-6535 (2009) · Zbl 1261.76026
[4] Bryan, Kirk, A numerical method for the study of the circulation of the world ocean, Journal of Computational Physics, 4, 3, 347-376 (1969) · Zbl 0195.55504
[5] Cotter, C. J.; Ham, D. A., Numerical wave propagation for the triangular p1dg-p2 finite element pair, Journal of Computational Physics, 230, 8, 2806-2820 (2011) · Zbl 1316.76019
[6] Cotter, Colin J.; Ham, David A.; Pain, Christopher C., A mixed discontinuous/continuous finite element pair for shallow-water ocean modelling, Ocean Modelling, 26, 1-2, 86-90 (2009)
[7] Cotter, Colin J.; Ham, David A.; Pain, Christopher C.; Reich, Sebastian, Lbb stability of a mixed Galerkin finite element pair for fluid flow simulations, Journal of Computational Physics, 228, 2, 336-348 (2009) · Zbl 1409.76058
[8] Chen, Yuejuan; Kuo, H., A global model with overlapping mercator and stereographic grids, Advances in Atmospheric Sciences, 3, 302-313 (1986)
[9] Comblen, R.; Lambrechts, J.; Remacle, J.-F.; Legat, V., Practical evaluation of five partly discontinuous finite element pairs for the non-conservative shallow water equations, International Journal for Numerical Methods in Fluids, 63, 6, 701-724 (2010) · Zbl 1423.76220
[10] Danilov, Sergey; Kivman, Gennady; Schröter, Jens, A finite-element ocean model: principles and evaluation, Ocean Modelling, 6, 2, 125-150 (2004)
[11] Giraldo, F. X.; Hesthaven, J. S.; Warburton, T., Nodal high-order discontinuous Galerkin methods for the spherical shallow water equations, J. Comput. Phys., 181, 499-525 (2002) · Zbl 1178.76268
[12] Giraldo, Francis X., Lagrange-Galerkin methods on spherical geodesic grids, Journal of Computational Physics, 136, 1, 197-213 (1997) · Zbl 0909.65066
[13] Giraldo, Francis X., High-order triangle-based discontinuous Galerkin methods for hyperbolic equations on a rotating sphere, Journal of Computational Physics, 214, 447-465 (2006) · Zbl 1089.65096
[14] Griffies, Stephen M., Fundamentals of Ocean Climate Models (2004), Princeton University Press · Zbl 1065.86002
[15] Galewsky, Joseph; Scott, Richard K.; Polvani, Lorenzo M., An initial-value problem for testing numerical models of the global shallow-water equations, Tellus, A, 56, 429-440 (2004)
[16] Jakob, Ruediger; Hack, James J.; Williamson, David L., Solutions to the shallow water test set using the spectral transform method, NCAR technical note (1993), TN-388+STR · Zbl 0878.76059
[17] Lanser, D.; Blom, J. G.; Verwer, J. G., Spatial discretization of the shallow water equations in spherical geometry using Osher’s scheme, Journal of Computational Physics, 165, 2, 542-565 (2000) · Zbl 1043.76044
[18] LeVeque, Randall J., Numerical Methods for Conservation Laws (1992), Birkhäuser Verlag · Zbl 0847.65053
[19] Läuter, Matthias; Giraldo, Francis X.; Handorf, Dörthe; Dethloff, Klaus, A discontinuous Galerkin method for the shallow water equations in spherical triangular coordinates, Journal of Computational Physics, 227, 24, 10226-10242 (2008) · Zbl 1218.76028
[20] Läuter, Matthias; Handorf, Dörthe; Dethloff, Klaus, Unsteady analytical solutions of the spherical shallow water equations, Journal of Computational Physics, 210, 2, 535-553 (2005) · Zbl 1078.86001
[21] Le Roux, Daniel Y.; Staniforth, Andrew; Lin, Charles A., Finite elements for shallow-water equation ocean models, Monthly Weather Review, 126, 7, 1931-1951 (1998)
[22] Ralf Mueller, Uwe Schulzweida, Climate data operators; version 1.4.5.1, 2010.; Ralf Mueller, Uwe Schulzweida, Climate data operators; version 1.4.5.1, 2010.
[23] Nair, Ramachandran D.; Thomas, Stephen J.; Loft, Richard D., A discontinuous Galerkin global shallow water model, Monthly Weather Review, 133, 4, 876-888 (2005)
[24] Pedlosky, J., Ocean Circulation Theory (1996), Springer-Verlag · Zbl 0159.59402
[25] Phillips, N. A., A map projection system suitable for large-scale numerical weather prediction, Journal of the Meteorological Society of Japan, 75, 262-267 (1957)
[26] E. Roeckner, G. Bäuml, L. Bonaventura, R. Brokopf, M. Esch, M. Giorgetta, S. Hagemann, I. Kirchner, L. Kornblueh, E. Manzini, A. Rhodin, U. Schlese, U. Schulzweida, A. Tompkins, The atmospheric general circulation model echam 5. Part 1: Model description. Techical report, Max Planck Institute for Meteorology, vol. 349, 2003.; E. Roeckner, G. Bäuml, L. Bonaventura, R. Brokopf, M. Esch, M. Giorgetta, S. Hagemann, I. Kirchner, L. Kornblueh, E. Manzini, A. Rhodin, U. Schlese, U. Schulzweida, A. Tompkins, The atmospheric general circulation model echam 5. Part 1: Model description. Techical report, Max Planck Institute for Meteorology, vol. 349, 2003.
[27] Rípodas, P.; Gassmann, A.; Förstner, J.; Majewski, D.; Giorgetta, M.; Korn, P.; Kornblueh, L.; Wan, H.; Zängl, G.; Bonaventura, L.; Heinze, T., Icosahedral shallow water model (icoswm): results of shallow water test cases and sensitivity to model parameters, Geoscientific Model Development Discussions, 2, 1, 581-638 (2009)
[28] Ronchi, C.; Iacono, R.; Paolucci, P. S., The ‘cubed sphere’: a new method for the solution of partial differential equations in spherical geometry, Journal of Computational Physics, 124, 1, 93-114 (1996) · Zbl 0849.76049
[29] Salmon, Rick, Lectures on Geophysical Fluid Dynamics (1998), Oxford University Press
[30] Shahbazi, Khosro, An explicit expression for the penalty parameter of the interior penalty method, Journal of Computational Physics, 205, 2, 401-407 (2005) · Zbl 1072.65149
[31] Shin, Seoleun; Sommer, Matthias; Reich, Sebastian; Névir, Peter, Evaluation of three spatial discretization schemes with the Galewsky et al. test, Atmospheric Science Letters, 11, 223-228 (2010)
[32] thuburn, John; li, Yong, Numerical simulations of Rossby-Haurwitz waves, Tellus A, 52, 2, 181-189 (2000)
[33] Taylor, Mark; Tribbia, Joseph; Iskandarani, Mohamed, The spectral element method for the shallow water equations on the sphere, Journal of Computational Physics, 130, 1, 92-108 (1997) · Zbl 0868.76072
[34] Ullrich, Paul A.; Jablonowski, Christiane; Leer, Bram van, High-order finite-volume methods for the shallow-water equations on the sphere, Journal of Computational and Physics, 229, 6104-6134 (2010) · Zbl 1425.76168
[35] Williamson, David L.; Drake, John B.; Hack, James J.; Jakob, Rüdiger; Swarztrauber, Paul N., A standard test set for numerical approximations to the shallow water equations in spherical geometry, Journal of Computational and Physics, 102, 1, 211-224 (1992) · Zbl 0756.76060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.