×

Orthotropic strain rate potential for the description of anisotropy in tension and compression of metals. (English) Zbl 1426.74056

Summary: In this paper, a macroscopic anisotropic strain rate potential, which can describe both the anisotropy and tension-compression asymmetry of the plastic response of textured metals is derived. This strain rate potential is the exact work-conjugate of the anisotropic stress potential CPB06 of Cazacu et al. (2006). Application of the developed strain rate potential to HCP high-purity alpha-titanium is presented.

MSC:

74C10 Small-strain, rate-dependent theories of plasticity (including theories of viscoplasticity)
74E10 Anisotropy in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Arminjon, M.; Imbault, D.; Bacroix, B.; Raphanel, J. L.: A fourth-order plastic potential for anisotropic metals and its analytical calculation from the texture function, Acta mech. 107, 33-51 (1994) · Zbl 0848.73005
[2] Bacroix, B.; Gilormini, P.: Finite-element simulations of earing in polycrystalline materials using a texture adjusted strain-rate potential, Model. simul. Mater. sci. Eng. 3, 1-21 (1995)
[3] Barlat, F.; Chung, K.: Anisotropic potentials for plastically deformation metals, Modell. simul. Mater. sci. Eng. 1, 403-416 (1993)
[4] Barlat, F.; Lege, D. J.; Brem, J. C.: A six-component yield function for anisotropic materials, Int. J. Plast. 7, 693-712 (1991)
[5] Barlat, F.; Chung, K.; Richmond, O.: Strain rate potential for metals and its application to minimum plastic work path calculations, Int. J. Plast. 9, 51-63 (1993)
[6] Cazacu, O.; Barlat, F.: Application of representation theory to describe yielding of anisotropic aluminum alloys, Int. J. Engng. sci. 41, 1367-1385 (2003)
[7] Cazacu, O.; Barlat, F.: A criterion for description of anisotropy and yield differential effects in pressure-insensitive metals, Int. J. Plast. 20, 2027-2045 (2004) · Zbl 1107.74006
[8] Cazacu, O.; Barlat, F.: Modeling plastic anisotropy and strength differential effects in metallic materials, Multiscale modeling of heterogeneous materials: from microstructure to macroscale properties, 71-91 (2008)
[9] Cazacu, O.; Plunkett, B.; Barlat, F.: Orthotropic yield criterion for hexagonal closed packed metals, Int. J. Plast. 22, 1171-1194 (2006) · Zbl 1090.74015
[10] Chung, K.; Richmond, O.: A deformation theory of plasticity based on minimum work paths, Int. J. Plast. 9, 907-920 (1993) · Zbl 0793.73034
[11] Chung, K.; Yoon, J. W.; Richmond, O.: Ideal sheet forming with frictional constraints, Int. J. Plast. 16, 595-610 (2000) · Zbl 0991.74018
[12] Graff, S.; Brocks, W.; Steglich, D.: Yielding of magnesium: from single crystal to polycrystalline aggregates, Int. J. Plast. 23, 1957-1978 (2007) · Zbl 1129.74011
[13] Hill, R.: A theory of yielding and plastic flow of anisotropic metals, Proc. R. Soc. lond. A 193, 281-297 (1948) · Zbl 0032.08805
[14] Hill, R.: Theoretical plasticity of textured aggregates, Math. proc. Cambr. phil. Soc. 85, 179-191 (1979) · Zbl 0388.73029
[15] Hill, R.: Constitutive dual potentials in classical plasticity, J. mech. Phys. solids 35, 23-33 (1987) · Zbl 0598.73028
[16] Hiwatashi, S.; Van Bael, A.; Van Houtte, P.; Teodosiu, C.: Modelling of plastic anisotropy based on texture and dislocation structure, Comput. mater. Sci. 9, 274-284 (1997) · Zbl 1056.74511
[17] Hosford, W. F.; Allen, T. J.: Twining and directional slip as a cause for strength differential effect, Met. trans. 4, 1424-1425 (1973)
[18] Hu, J. G.; Jonas, J. J.; Ishikawa, T.: FEM simulation of the forming of textured aluminum sheets, Mater. sci. Eng. A 256, 51 (1998)
[19] Karafillis, A. P.; Boyce, M. C.: A general anisotropic yield criterion using bounds and a transformation weighting tensor, J. mech. Phys. solids 41, 1859-1886 (1993) · Zbl 0792.73029
[20] Khan, A. S.; Kazmi, R.; Farroch, B.: Multiaxial and non-proportional loading responses, anisotropy and modeling of ti – 6Al – 4V titanium alloy over wide ranges of strain rates and temperatures, Int. J. Plast. 23, 931-950 (2007) · Zbl 1148.74304
[21] Khan, A. S.; Kazmi, R.; Pandey, A.; Stoughton, T.: Evolution of subsequent yield surfaces and elastic constants with finite plastic deformation. Part I: A very low work hardening aluminum alloy (Al6061 – T6511), Int. J. Plast. 25, 1611-1625 (2009) · Zbl 05591544
[22] Kim, D., Chung, K., Barlat, F., Youn, J.R., Kang, T.J., 2003, Non-quadratic plane-stress anisotropic strain-rate potential. In: Proceedings of the International Symposium on Microstructures and Mechanical Properties of New Engineering Materials (IMMM 2003), Wuhan, China, October 6th 2003, pp. 46 – 51.
[23] Kim, D.; Barlat, F.; Bouvier, S.; Raballah, M.; Balan, T.; Chung, K.: Non-quadratic anisotropic potentials based on linear transformation of plastic strain rate, Int. J. Plast. 23, 1380-1399 (2007) · Zbl 1134.74327
[24] Kim, J. H.; Lee, M. -G.; Barlat, F.; Wagoner, R. H.; Chung, K.: An elasto-plastic constitutive model with plastic strain rate potentials for anisotropic cubic metals, Int. J. Plast. 24, 2298-2334 (2008) · Zbl 1151.74009
[25] Kuwabara, T., Katami, C., Kikuchi, M., Shindo, T., Ohwue, T., 2001. Cup drawing of pure titanium sheet-finite element analysis and experimental validation. In: Proceedings of the Seventh International Conference Numerical Methods in Industrial Forming Processes, Toyohashi, Japan, 18 – 20 June 2001, pp. 781 – 785.
[26] Lou, X. Y.; Li, M.; Boger, B. K.; Agnew, S. R.; Wagoner, R. H.: Hardening evolution of AZ31B mg sheet, Int. J. Plast. 23, 44-86 (2007) · Zbl 1331.74007
[27] Nixon, M.E., Cazacu, O., Lebensohn, R.A., 2009. Anisotropic response of high-purity \alpha -titanium: experimental characterization and constitutive modeling. Int. J. Plast., Available from <http://dx.doi.org/10.1016/j.ijplas.2009.08.007> (available on line). · Zbl 1426.74052
[28] Plunkett, B.; Lebensohn, R. A.; Cazacu, O.; Barlat, F.: Anisotropic yield function of hexagonal materialstaking into account texture development and anisotropic hardening, Acta mater. 54, 4159-4169 (2006)
[29] Plunkett, B.; Cazacu, O.; Barlat, F.: Orthotropic yield criteria for description of the anisotropy in tension and compression of sheet metals, Int. J. Plast. 24, 847-866 (2008) · Zbl 1144.74309
[30] Rabahallah, M.; Balan, T.; Bouvier, S.; Bacroix, B.; Barlat, F.; Chung, K.; Teodosiu, C.: Parameter identification of advanced plastic strain rate potentials and impact on plastic anisotropy prediction, Int. J. Plast. 25, 491-512 (2009) · Zbl 1157.74007
[31] Takuda, H.; Yoshii, T.; Hatta, N.: Finite-element analysis of the formability of magnesium-based alloy AZ31 sheet, J. mater. Process. techn., 135-140 (1999)
[32] Van Bael, A., Van Houtte, P., 2002. Convex fourth and sixth-order plastic potentials derived form crystallographic texture. In: Cescotto, S. (Ed.), Proceedings of the Sixth European Mechanics of Materials Conference (EMMC6), University of Liege, Liege, Belgium, pp. 51 – 58.
[33] Van Houtte, P.: Application of plastic potentials to strain rate sensitive and insensitive anisotropic materials, Int. J. Plast. 10, 719-748 (1994) · Zbl 0810.73014
[34] Van Houtte, P.; Van Bael, A.: Convex plastic potentials of fourth and sixth rank for anisotropic materials, Int. J. Plast. 20, 1505-1524 (2004) · Zbl 1066.74518
[35] Vitek, V.; Mrovec, M.; Bassani, J. L.: Influence of non-glide stresses on plastic flow: from atomistic to continuum modeling, Mater. sci eng. A 365, 31-37 (2004)
[36] Yoon, J. W.; Song, I. S.; Yang, D. Y.; Chung, K.; Barlat, F.: Finite element method for sheet forming based on an anisotropic strain-rate potential and the convected coordinate system, Int. J. Mechan. sci. 37, 733-752 (1995) · Zbl 0839.73075
[37] Yoon, J. W.; Chung, K.; Pourboghrat, F.; Barlat, F.: Design optimization of extruded preform for hydroforming processes based on direct design method, Int. J. Mech. sci. 48, 1416-1428 (2006) · Zbl 1192.74300
[38] Ziegler, H.: An introduction to thermodynamics, (1977) · Zbl 0358.73001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.