×

A symbolic computation framework for constitutive modelling based on entropy principles. (English) Zbl 1426.74032

Summary: The entropy principle in the formulation of Müller and Liu is a common tool used in constitutive modelling for the development of restrictions on the unknown constitutive functions describing material properties of various physical continua.
In the current work, a symbolic software implementation of the Liu algorithm, based on Maple software and the GeM package, is presented. The computational framework is used to algorithmically perform technically demanding symbolic computations related to the entropy principle, to simplify and reduce Liu identities, and ultimately to derive explicit formulas describing classes of constitutive functions that do not violate the entropy principle. Detailed physical examples are presented and discussed.

MSC:

74A20 Theory of constitutive functions in solid mechanics
68W30 Symbolic computation and algebraic computation
82B21 Continuum models (systems of particles, etc.) arising in equilibrium statistical mechanics

Software:

GeM; Maple
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Hutter, K.; Jöhnk, K., Continuum Methods of Physical Modeling (2004), Springer · Zbl 1058.76001
[2] Müller, I., A thermodynamic theory of mixtures of fluids, Arch. Ration. Mech. Anal., 28, 1, 1-39 (1968) · Zbl 0157.56703
[3] Müller, I., Die Kältefunktion, eine universelle Funktion in der Thermodynamik viskoser wärmeleitender Flüssigkeiten, Arch. Ration. Mech. Anal., 40, 1, 1-36 (1971) · Zbl 0229.73003
[4] Liu, I.-S., Method of Lagrange multipliers for exploitation of the entropy principle, Arch. Ration. Mech. Anal., 46, 2, 131-148 (1972) · Zbl 0252.76003
[5] Goodman, M.; Cowin, S., A continuum theory for granular materials, Arch. Ration. Mech. Anal., 44, 4, 249-266 (1972) · Zbl 0243.76005
[6] Goda, I.; Assidi, M.; Belouettar, S.; Ganghoffer, J., A micropolar anisotropic constitutive model of cancellous bone from discrete homogenization, J. Mech. Behav. Biomed. Mater., 16, 87-108 (2012)
[7] Goda, I.; Assidi, M.; Ganghoffer, J.-F., A 3D elastic micropolar model of vertebral trabecular bone from lattice homogenization of the bone microstructure, Biomech. Model. Mechanobiol., 13, 1, 53-83 (2014)
[8] Robert, R., A maximum-entropy principle for two-dimensional perfect fluid dynamics, J. Stat. Phys., 65, 3-4, 531-553 (1991) · Zbl 0935.76530
[9] I-Shih, L.; Müller, I., Extended thermodynamics of classical and degenerate gases, Arch. Ration. Mech. Anal., 83, 285 (1983) · Zbl 0554.76014
[10] Dreyer, W.; Kunik, M., Maximum entropy principle revisited, Contin. Mech. Thermodyn., 10, 6, 331-347 (1998) · Zbl 0951.76085
[11] Coleman, B. D.; Noll, W., The thermodynamics of elastic materials with heat conduction and viscosity, Arch. Ration. Mech. Anal., 13, 1, 167-178 (1963) · Zbl 0113.17802
[12] Wang, Y.; Hutter, K., Comparison of two entropy principles and their applications in granular flows with / without fluid, Arch. Mech., 51, 5, 605-632 (1999) · Zbl 0958.76090
[13] Reis, M. C.; Wang, Y., A two-fluid model for reactive dilute solid-liquid mixtures with phase changes, Contin. Mech. Thermodyn., 29, 2, 1-26 (2016)
[14] Heß, J.; Wang, Y.; Hutter, K., Thermodynamically consistent modeling of granular-fluid mixtures incorporating pore pressure evolution and hypoplastic behavior, Contin. Mech. Thermodyn., 29, 1, 311-343 (2017) · Zbl 1365.76327
[15] Liu, I. S., Continuum Mechanics (2002), Springer · Zbl 1058.74004
[16] Hauser, R.; Kirchner, N., A historical note on the entropy principle of Müller and Liu, Contin. Mech. Thermodyn., 14, 2, 223-226 (2002) · Zbl 0992.80001
[17] Cheviakov, A. F., GeM software package for computation of symmetries and conservation laws of differential equations, Comput. Phys. Commun., 176, 1, 48-61 (2007) · Zbl 1196.34045
[18] Cheviakov, A. F., Computation of fluxes of conservation laws, J. Eng. Math., 66, 1-3, 153-173 (2010) · Zbl 1193.65155
[19] Cheviakov, A. F., Symbolic computation of local symmetries of nonlinear and linear partial and ordinary differential equations, Math. Comput. Sci., 4, 2-3, 203-222 (2010) · Zbl 1218.68203
[20] Truesdell, C., Mechanical basis of diffusion, J. Chem. Phys., 37, 10, 2336-2344 (1962)
[21] Müller, I., On the entropy inequality, Arch. Ration. Mech. Anal., 26, 2, 118-141 (1967) · Zbl 0163.46701
[22] Hutter, K., The foundations of thermodynamics, its basic postulates and implications. A review of modern thermodynamics, Acta Mech., 27, 1-4, 1-54 (1977)
[23] Müller, I.; Liu, I.-S., Thermodynamics of mixtures of fluids, (Truesdell, C., Rational Thermodynamics (1984), Springer)
[24] GeM software package, examples, and description, (http://math.usask.ca/ shevyakov/gem/; GeM software package, examples, and description, (http://math.usask.ca/ shevyakov/gem/
[25] Cheviakov, A. F., Symbolic computation of equivalence transformations and parameter reduction for nonlinear physical models, Comput. Phys. Commun., 220, Supplement C, 56-73 (2017) · Zbl 1411.34003
[26] Grossman, B., Fundamental concepts of real gas dynamics, Technical Report (2000), Virginia Polytechnic Institute and State University
[27] Müller, I.; Ruggeri, T., Rational Extended Thermodynamics (1998), Springer · Zbl 0895.00005
[28] Cheviakov, A. F.; Oberlack, M., Generalized Ertel’s theorem and infinite hierarchies of conserved quantities for three-dimensional time-dependent Euler and Navier-Stokes equations, J. Fluid Mech., 760, 368-386 (2014) · Zbl 1331.76008
[29] Wang, Y.; Hutter, K., Shearing flows in a Goodman-Cowin type material - theory and numerical results, Part. Sci. Technol., 17, 1, 97-124 (1999)
[30] Olver, P. J., Applications of Lie Groups to Differential Equations (2000), Springer · Zbl 0937.58026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.