Expanding large global solutions of the equations of compressible fluid mechanics. (English) Zbl 1426.65152

The dynamics of moving gases in three dimensions as described by compressible isentropic Euler system is considered. Without any symmetry assumptions on the initial data, global-in-time unique solutions are constructed to the vacuum free boundary when the adiabatic exponent \(\gamma\) lies in the interval \((1, 5/3]\). The paper is organized as follows. Section 1 is an introduction. In Section 2, the stability problem is formulated and the main result in Lagrangian coordinates is stated. Vorticity bounds are explained in Section 3, main energy estimates in Section 4, and the proof of the main theorem in Section 5. The paper is finished with four appendices. In Appendix A, the properties of the background solution are summarized. Appendix B contains the basic properties of commutators between various differential operators used in the paper, while Appendix C contains the statements of frequently used Hardy-Sobolev embeddings. In Appendix D, an alternative and equivalent formulation of the problem starting from the Lagrangian coordinates are given.


65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
76M60 Symmetry analysis, Lie group and Lie algebra methods applied to problems in fluid mechanics
35L45 Initial value problems for first-order hyperbolic systems
35Q31 Euler equations
76N15 Gas dynamics (general theory)
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
35R35 Free boundary problems for PDEs
Full Text: DOI arXiv


[1] Chen, G-Q, Remarks on R. J. DiPerna’s paper: convergence of the viscosity method for isentropic gas dynamics [Comm. Math. Phys. 91 (1983), no. 1, 1-30; MR0719807 (85i:35118)], Proc. Am. Math. Soc., 125, 2981-2986, (1997) · Zbl 0888.35066
[2] Chiodaroli, E.; Lellis, C.; Kreml, O., Global ill-posedness of the isentropic system of gas dynamics, Commun. Pure Appl. Math., 68, 1157-1190, (2015) · Zbl 1323.35137
[3] Christodoulou, D.: The Formation of Shocks in 3-Dimensional Fluids. EMS Monographs in Mathematics. EMS Publishing House, Zürich (2007) · Zbl 1138.35060
[4] Christodoulou, D., Miao, S.: Compressible Flow and Euler’s Equations, Surveys in Modern Mathematics, vol. 9. International Press, Vienna (2014) · Zbl 1329.76002
[5] Coutand, D.; Shkoller, S., Well-posedness in smooth function spaces for the moving-boundary 1-D compressible Euler equations in physical vacuum, Commun. Pure Appl. Math., 64, 328-366, (2011) · Zbl 1217.35119
[6] Coutand, D.; Shkoller, S., Well-posedness in smooth function spaces for the moving boundary three-dimensional compressible Euler equations in physical vacuum, Arch. Ration. Mech. Anal., 206, 515-616, (2012) · Zbl 1257.35147
[7] Dacorogna, B.; Moser, J., On a partial differential equation involving the Jacobian determinant, Ann. Inst. H. Poincaré Anal. Non Linéaire, 7, 1-26, (1990) · Zbl 0707.35041
[8] Dafermos, C.: Hyperbolic Conservation Laws in Continuum Physics. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 325, 2nd edn. Springer, Berlin (2005) · Zbl 1078.35001
[9] DiPerna, RJ, Convergence of the viscosity method for isentropic gas dynamics, Commun. Math. Phys., 91, 1-30, (1983) · Zbl 0533.76071
[10] Eggers, J.; Fontelos, AM, The role of self-similarity in singularities of partial differential equations, Nonlinearity, 22, r1-r44, (2009) · Zbl 1152.35300
[11] Friedrich, H., Sharp asymptotics for Einstein-\(\lambda \)-dust flows, Commun. Math. Phys., 350, 803-844, (2017) · Zbl 1360.83008
[12] Grassin, M., Global smooth solutions to Euler equations for a perfect gas, Indiana Univ. Math. J., 47, 1397-1432, (1998) · Zbl 0930.35134
[13] Hadžić, M.; Jang, J., Nonlinear stability of expanding star solutions in the radially-symmetric mass-critical Euler-Poisson system, Commun. Pure Appl. Math., 71, 827-891, (2018) · Zbl 1390.35246
[14] Hadžić, M.; Speck, J., The global future stability of the FLRW solutions to the Dust-Einstein system with a positive cosmological constant, J. Hyp. Differ. Equ., 12, 87-188, (2015) · Zbl 1333.35281
[15] Huang, H.; Marcati, P.; Pan, R., Convergence to the Barenblatt solution for the compressible Euler equations with damping and vacuum, Arch. Ration. Mech. Anal., 176, 1-24, (2005) · Zbl 1064.76090
[16] Jang, J.; Masmoudi, N., Well-posedness for compressible Euler equations with physical vacuum singularity, Commun. Pure Appl. Math., 62, 1327-1385, (2009) · Zbl 1213.35298
[17] Jang, J., Masmoudi, N.: Vacuum in gas and fluid dynamics. In: Proceedings of the IMA Summer School on Nonlinear Conservation Laws and Applications, pp. 315-329. Springer (2011) · Zbl 1246.35131
[18] Jang, J.; Masmoudi, N., Well and ill-posedness for compressible Euler equations with vacuum, J. Math. Phys., 53, 115625, (2012) · Zbl 1440.76134
[19] Jang, J.; Masmoudi, N., Well-posedness of compressible Euler equations in a physical vacuum, Commun. Pure Appl. Math., 68, 61-111, (2015) · Zbl 1317.35185
[20] Kufner, A., Malgranda, L., Persson, L.-E.: The Hardy Inequality. Vydavatelský Servis, Plzen (2007)
[21] Lindblad, H., Well posedness for the motion of a compressible liquid with free surface boundary, Commun. Math. Phys., 260, 319-392, (2005) · Zbl 1094.35088
[22] Lions, PL; Perthame, B.; Souganidis, PE, Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates, Commun. Pure Appl. Math., 49, 599-638, (1996) · Zbl 0853.76077
[23] Liu, T-P, Compressible flow with damping and vacuum, Jpn. J. Appl. Math., 13, 25-32, (1996) · Zbl 0865.35107
[24] Liu, T-P; Smoller, J., On the vacuum state for isentropic gas dynamics equations, Adv. Math., 1, 345-359, (1980) · Zbl 0461.76055
[25] Liu, T-P; Yang, T., Compressible Euler equations with vacuum, J. Differ. Equ., 140, 223-237, (1997) · Zbl 0890.35111
[26] Liu, T-P; Yang, T., Compressible flow with vacuum and physical singularity, Methods Appl. Anal., 7, 495-509, (2000) · Zbl 1033.76050
[27] Lübbe, C.; Valiente-Kroon, JA, A conformal approach for the analysis of the nonlinear stability of pure radiation cosmologies, Ann. Phys., 328, 1-25, (2013) · Zbl 1263.83188
[28] Luk, J., Speck, J.: Shock formation in solutions to the \(2D\) compressible Euler equations in the presence of non-zero vorticity. Invent. Math. (to appear). arXiv:1610.00737 · Zbl 1409.35142
[29] Luo, T.; Xin, Z.; Zeng, H., Well-posedness for the motion of physical vacuum of the three-dimensional compressible Euler equations with or without self-gravitation, Arch. Ration. Mech. Anal., 213, 763-831, (2014) · Zbl 1309.35065
[30] Luo, T.; Zeng, H., Global existence of smooth solutions and convergence to barenblatt solutions for the physical vacuum free boundary problem of compressible euler equations with damping, Commun. Pure Appl. Math., 69, 1354-1396, (2016) · Zbl 1344.35086
[31] Majda, A.: Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Volume 53 of Applied Mathematical Sciences. Springer, New York (1984) · Zbl 0537.76001
[32] Majda, A., Vorticity and the mathematical theory of incompressible fluid flow, Commun. Pure Appl. Math., 39, s187-s220, (1986) · Zbl 0595.76021
[33] Makino, T.; Ukai, S.; Kawashima, S., Sur la solution à support compact de l’équations d’Euler compressible, Jpn. J. Appl. Math., 3, 249-257, (1986) · Zbl 0637.76065
[34] Merle, F.; Raphaël, P.; Szeftel, J., Stable self similar blow up dynamics for \(L^2\)-supercritical NLS equations, Geom. Funct. Anal., 20, 1028-1071, (2010) · Zbl 1204.35153
[35] Oliynyk, T., Future stability of the FLRW fluid solutions in the presence of a positive cosmological constant, Commun. Math. Phys., 346, 293-312, (2016) · Zbl 1346.83023
[36] Rodnianski, I.; Speck, J., The nonlinear future stability of the FLRW family of solutions to the irrotational Euler-Einstein system with a positive cosmological constant, J. Eur. Math. Soc., 15, 2369-2462, (2013) · Zbl 1294.35164
[37] Rozanova, O.: Solutions with Linear Profile of Velocity to the Euler Equations in Several Dimensions. Hyperbolic Problems: Theory, Numerics, Applications, pp. 861-870. Springer, Berlin (2003) · Zbl 1134.35391
[38] Shkoller, S., Sideris, T.C.: Global existence of near-affine solutions to the compressible Euler equations. Preprint arXiv:1710.08368
[39] Serre, D., Solutions classiques globales des équations d’Euler pour un fluide parfait compressible, Ann. l’Inst. Fourier, 47, 139-153, (1997) · Zbl 0864.35069
[40] Serre, D., Expansion of a compressible gas in vacuum, Bull. Inst. Math. Acad. Sin. Taiwan, 10, 695-716, (2015) · Zbl 1328.76059
[41] Speck, J., The nonlinear future stability of the FLRW family of solutions to the Euler-Einstein system with a positive cosmological constant, Sel. Math., 18, 633-715, (2012) · Zbl 1251.83071
[42] Sideris, TC, Formation of singularities in three-dimensional compressible fluids, Commun. Math. Phys., 101, 475-485, (1985) · Zbl 0606.76088
[43] Sideris, TC, Spreading of the free boundary of an ideal fluid in a vacuum, J. Differ. Equ., 257, 1-14, (2014) · Zbl 06289300
[44] Sideris, TC, Global existence and asymptotic behavior of affine motion of 3D ideal fluids surrounded by vacuum, Arch. Ration. Mech. Anal., 225, 141-176, (2017) · Zbl 1367.35115
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.