## Expanding large global solutions of the equations of compressible fluid mechanics.(English)Zbl 1426.65152

The dynamics of moving gases in three dimensions as described by compressible isentropic Euler system is considered. Without any symmetry assumptions on the initial data, global-in-time unique solutions are constructed to the vacuum free boundary when the adiabatic exponent $$\gamma$$ lies in the interval $$(1, 5/3]$$. The paper is organized as follows. Section 1 is an introduction. In Section 2, the stability problem is formulated and the main result in Lagrangian coordinates is stated. Vorticity bounds are explained in Section 3, main energy estimates in Section 4, and the proof of the main theorem in Section 5. The paper is finished with four appendices. In Appendix A, the properties of the background solution are summarized. Appendix B contains the basic properties of commutators between various differential operators used in the paper, while Appendix C contains the statements of frequently used Hardy-Sobolev embeddings. In Appendix D, an alternative and equivalent formulation of the problem starting from the Lagrangian coordinates are given.

### MSC:

 65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems 76M60 Symmetry analysis, Lie group and Lie algebra methods applied to problems in fluid mechanics 35L45 Initial value problems for first-order hyperbolic systems 35Q31 Euler equations 76N15 Gas dynamics (general theory) 76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics 35R35 Free boundary problems for PDEs

### Keywords:

global solution; isentropic Euler system
Full Text:

### References:

  Chen, G-Q, Remarks on R. J. DiPerna’s paper: convergence of the viscosity method for isentropic gas dynamics [Comm. Math. Phys. 91 (1983), no. 1, 1-30; MR0719807 (85i:35118)], Proc. Am. Math. Soc., 125, 2981-2986, (1997) · Zbl 0888.35066  Chiodaroli, E.; Lellis, C.; Kreml, O., Global ill-posedness of the isentropic system of gas dynamics, Commun. Pure Appl. Math., 68, 1157-1190, (2015) · Zbl 1323.35137  Christodoulou, D.: The Formation of Shocks in 3-Dimensional Fluids. EMS Monographs in Mathematics. EMS Publishing House, Zürich (2007) · Zbl 1138.35060  Christodoulou, D., Miao, S.: Compressible Flow and Euler’s Equations, Surveys in Modern Mathematics, vol. 9. International Press, Vienna (2014) · Zbl 1329.76002  Coutand, D.; Shkoller, S., Well-posedness in smooth function spaces for the moving-boundary 1-D compressible Euler equations in physical vacuum, Commun. Pure Appl. Math., 64, 328-366, (2011) · Zbl 1217.35119  Coutand, D.; Shkoller, S., Well-posedness in smooth function spaces for the moving boundary three-dimensional compressible Euler equations in physical vacuum, Arch. Ration. Mech. Anal., 206, 515-616, (2012) · Zbl 1257.35147  Dacorogna, B.; Moser, J., On a partial differential equation involving the Jacobian determinant, Ann. Inst. H. Poincaré Anal. Non Linéaire, 7, 1-26, (1990) · Zbl 0707.35041  Dafermos, C.: Hyperbolic Conservation Laws in Continuum Physics. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 325, 2nd edn. Springer, Berlin (2005) · Zbl 1078.35001  DiPerna, RJ, Convergence of the viscosity method for isentropic gas dynamics, Commun. Math. Phys., 91, 1-30, (1983) · Zbl 0533.76071  Eggers, J.; Fontelos, AM, The role of self-similarity in singularities of partial differential equations, Nonlinearity, 22, r1-r44, (2009) · Zbl 1152.35300  Friedrich, H., Sharp asymptotics for Einstein-$$\lambda$$-dust flows, Commun. Math. Phys., 350, 803-844, (2017) · Zbl 1360.83008  Grassin, M., Global smooth solutions to Euler equations for a perfect gas, Indiana Univ. Math. J., 47, 1397-1432, (1998) · Zbl 0930.35134  Hadžić, M.; Jang, J., Nonlinear stability of expanding star solutions in the radially-symmetric mass-critical Euler-Poisson system, Commun. Pure Appl. Math., 71, 827-891, (2018) · Zbl 1390.35246  Hadžić, M.; Speck, J., The global future stability of the FLRW solutions to the Dust-Einstein system with a positive cosmological constant, J. Hyp. Differ. Equ., 12, 87-188, (2015) · Zbl 1333.35281  Huang, H.; Marcati, P.; Pan, R., Convergence to the Barenblatt solution for the compressible Euler equations with damping and vacuum, Arch. Ration. Mech. Anal., 176, 1-24, (2005) · Zbl 1064.76090  Jang, J.; Masmoudi, N., Well-posedness for compressible Euler equations with physical vacuum singularity, Commun. Pure Appl. Math., 62, 1327-1385, (2009) · Zbl 1213.35298  Jang, J., Masmoudi, N.: Vacuum in gas and fluid dynamics. In: Proceedings of the IMA Summer School on Nonlinear Conservation Laws and Applications, pp. 315-329. Springer (2011) · Zbl 1246.35131  Jang, J.; Masmoudi, N., Well and ill-posedness for compressible Euler equations with vacuum, J. Math. Phys., 53, 115625, (2012) · Zbl 1440.76134  Jang, J.; Masmoudi, N., Well-posedness of compressible Euler equations in a physical vacuum, Commun. Pure Appl. Math., 68, 61-111, (2015) · Zbl 1317.35185  Kufner, A., Malgranda, L., Persson, L.-E.: The Hardy Inequality. Vydavatelský Servis, Plzen (2007)  Lindblad, H., Well posedness for the motion of a compressible liquid with free surface boundary, Commun. Math. Phys., 260, 319-392, (2005) · Zbl 1094.35088  Lions, PL; Perthame, B.; Souganidis, PE, Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates, Commun. Pure Appl. Math., 49, 599-638, (1996) · Zbl 0853.76077  Liu, T-P, Compressible flow with damping and vacuum, Jpn. J. Appl. Math., 13, 25-32, (1996) · Zbl 0865.35107  Liu, T-P; Smoller, J., On the vacuum state for isentropic gas dynamics equations, Adv. Math., 1, 345-359, (1980) · Zbl 0461.76055  Liu, T-P; Yang, T., Compressible Euler equations with vacuum, J. Differ. Equ., 140, 223-237, (1997) · Zbl 0890.35111  Liu, T-P; Yang, T., Compressible flow with vacuum and physical singularity, Methods Appl. Anal., 7, 495-509, (2000) · Zbl 1033.76050  Lübbe, C.; Valiente-Kroon, JA, A conformal approach for the analysis of the nonlinear stability of pure radiation cosmologies, Ann. Phys., 328, 1-25, (2013) · Zbl 1263.83188  Luk, J., Speck, J.: Shock formation in solutions to the $$2D$$ compressible Euler equations in the presence of non-zero vorticity. Invent. Math. (to appear). arXiv:1610.00737 · Zbl 1409.35142  Luo, T.; Xin, Z.; Zeng, H., Well-posedness for the motion of physical vacuum of the three-dimensional compressible Euler equations with or without self-gravitation, Arch. Ration. Mech. Anal., 213, 763-831, (2014) · Zbl 1309.35065  Luo, T.; Zeng, H., Global existence of smooth solutions and convergence to barenblatt solutions for the physical vacuum free boundary problem of compressible euler equations with damping, Commun. Pure Appl. Math., 69, 1354-1396, (2016) · Zbl 1344.35086  Majda, A.: Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Volume 53 of Applied Mathematical Sciences. Springer, New York (1984) · Zbl 0537.76001  Majda, A., Vorticity and the mathematical theory of incompressible fluid flow, Commun. Pure Appl. Math., 39, s187-s220, (1986) · Zbl 0595.76021  Makino, T.; Ukai, S.; Kawashima, S., Sur la solution à support compact de l’équations d’Euler compressible, Jpn. J. Appl. Math., 3, 249-257, (1986) · Zbl 0637.76065  Merle, F.; Raphaël, P.; Szeftel, J., Stable self similar blow up dynamics for $$L^2$$-supercritical NLS equations, Geom. Funct. Anal., 20, 1028-1071, (2010) · Zbl 1204.35153  Oliynyk, T., Future stability of the FLRW fluid solutions in the presence of a positive cosmological constant, Commun. Math. Phys., 346, 293-312, (2016) · Zbl 1346.83023  Rodnianski, I.; Speck, J., The nonlinear future stability of the FLRW family of solutions to the irrotational Euler-Einstein system with a positive cosmological constant, J. Eur. Math. Soc., 15, 2369-2462, (2013) · Zbl 1294.35164  Rozanova, O.: Solutions with Linear Profile of Velocity to the Euler Equations in Several Dimensions. Hyperbolic Problems: Theory, Numerics, Applications, pp. 861-870. Springer, Berlin (2003) · Zbl 1134.35391  Shkoller, S., Sideris, T.C.: Global existence of near-affine solutions to the compressible Euler equations. Preprint arXiv:1710.08368  Serre, D., Solutions classiques globales des équations d’Euler pour un fluide parfait compressible, Ann. l’Inst. Fourier, 47, 139-153, (1997) · Zbl 0864.35069  Serre, D., Expansion of a compressible gas in vacuum, Bull. Inst. Math. Acad. Sin. Taiwan, 10, 695-716, (2015) · Zbl 1328.76059  Speck, J., The nonlinear future stability of the FLRW family of solutions to the Euler-Einstein system with a positive cosmological constant, Sel. Math., 18, 633-715, (2012) · Zbl 1251.83071  Sideris, TC, Formation of singularities in three-dimensional compressible fluids, Commun. Math. Phys., 101, 475-485, (1985) · Zbl 0606.76088  Sideris, TC, Spreading of the free boundary of an ideal fluid in a vacuum, J. Differ. Equ., 257, 1-14, (2014) · Zbl 06289300  Sideris, TC, Global existence and asymptotic behavior of affine motion of 3D ideal fluids surrounded by vacuum, Arch. Ration. Mech. Anal., 225, 141-176, (2017) · Zbl 1367.35115
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.