×

zbMATH — the first resource for mathematics

On convergence and semi-convergence of SSOR-like methods for augmented linear systems. (English) Zbl 1426.65051
Summary: In this paper, we analyze the convergence and semi-convergence of a class of SSOR-like methods with four real functions for augmented systems. The class takes most existed SSOR-like methods as its special cases. For nonsingular systems, we obtain the minimum of convergence factors of all the SSOR-like methods in the class, and study when it can be reached by the convergence factors of methods in the class. By considering the equivalence of methods, we show that most of the existed SSOR-like methods have the same minimum of convergence factors.
MSC:
65F10 Iterative numerical methods for linear systems
65F50 Computational methods for sparse matrices
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Brezzi, F.; Fortin, M., Mixed and Hybrid Finite Element Methods, (1991), Springer-Verlag New York · Zbl 0788.73002
[2] Betts, J. T., Practical Methods for Optimal Control Using Nonlinear Programming, (2001), SIAM Philadelphia
[3] Dyn, N.; Ferguson, W. E., The numerical solution of equality constrained quadratic programming problems, Math. Comput., 41, 165-170, (1983) · Zbl 0527.49030
[4] Gill, P. E.; Murray, W.; Wright, M. H., Practical Optimization, (1981), Academic Press London-New York · Zbl 0503.90062
[5] Fortin, M.; Glowinski, R., Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary Value Problems, (1983), North-Holland Pub. Co. Amsterdam · Zbl 0525.65045
[6] Bramble, J. H.; Pasciak, J. E.; Vassilev, A. T., Analysis of the inexact Uzawa algorithm for saddle point problems, SIAM J. Numer. Anal., 34, 1072-1092, (1997) · Zbl 0873.65031
[7] Gould, N. I.M.; Hribar, M. E.; Nocedal, J., On the solution of equality constrained quadratic programming problems arising in optimization, SIAM J. Sci. Comput., 23, 1376-1395, (2001) · Zbl 0999.65050
[8] Elman, H. C.; Silvester, D. J.; Wathen, A. J., Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes equations, Numer. Math., 90, 665-688, (2002) · Zbl 1143.76531
[9] Benzi, M.; Golub, G. H.; Liesen, J., Numerical solution of saddle point problems, Acta Numer., 14, 1-137, (2005) · Zbl 1115.65034
[10] Elman, H. C.; Golub, G. H., Inexact and preconditioned Uzawa algorithms for saddle point problems, SIAM J. Numer. Anal., 31, 1645-1661, (1994) · Zbl 0815.65041
[11] Hu, Q.-Y.; Zou, J., An iterative method with variable relaxation parameters for saddle point problems, SIAM J. Matrix Anal. Appl., 23, 317-338, (2001) · Zbl 1007.65019
[12] Hu, Q.-Y.; Zou, J., Two new variants of nonlinear inexact Uzawa algorithms for saddle point problems, Numer. Math., 93, 333-359, (2002) · Zbl 1019.65024
[13] Lin, Y.-Q.; Wei, Y.-M., Fast corrected Uzawa methods for solving symmetric saddle point problems, Calcolo, 43, 65-82, (2006) · Zbl 1168.65334
[14] Bai, Z.-Z.; Wang, Z.-Q., On parameterized inexact Uzawa methods for generalized saddle point problems, Linear Algebra Appl., 428, 2900-2932, (2008) · Zbl 1144.65020
[15] Lu, J.-F.; Zhang, Z.-Y., A modified nonlinear inexact Uzawa algorithm with a variable relaxation parameter for the stabilized saddle point problem, SIAM J. Matrix Anal. Appl., 31, 1934-1957, (2010) · Zbl 1201.65047
[16] Keller, C.; Gould, N. I.M.; Wathen, A. J., Constraint preconditioning for indefinite linear systems, SIAM J. Matrix Anal. Appl., 21, 1300-1317, (2000) · Zbl 0960.65052
[17] Bai, Z.-Z.; Ng, M. K., On inexact preconditioners for nonsymmetric matrices, SIAM J. Sci. Comput., 26, 1710-1724, (2005) · Zbl 1077.65043
[18] De Sturler, E.; Liesen, J., Block-diagonal and constraint preconditioners for nonsymmetric indefinite linear systems, SIAM J. Sci. Comput., 26, 1598-1619, (2005) · Zbl 1078.65027
[19] Lin, Y.-Q.; Wei, Y.-M., A note on constraint preconditioners for nonsymmetric saddle point problems, Numer. Linear Algebra Appl., 14, 659-664, (2007) · Zbl 1199.65090
[20] Bai, Z.-Z.; Ng, M. K.; Wang, Z.-Q., Constraint preconditioners for symmetric indefinite matrices, SIAM J. Matrix Anal. Appl., 31, 410-433, (2009) · Zbl 1195.65033
[21] Bai, Z.-Z.; Golub, G. H.; Ng, M. K., Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl., 24, 603-626, (2003) · Zbl 1036.65032
[22] Bai, Z.-Z.; Golub, G. H.; Pan, J.-Y., Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems, Numer. Math., 98, 1-32, (2004) · Zbl 1056.65025
[23] Benzi, M.; Golub, G. H., A preconditioner for generalized saddle point problems, SIAM J. Matrix Anal. Appl., 26, 20-41, (2004) · Zbl 1082.65034
[24] Bai, Z.-Z.; Golub, G. H., Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle point problems, IMA J. Numer. Anal., 27, 1-23, (2007) · Zbl 1134.65022
[25] Bai, Z.-Z.; Golub, G. H.; Li, C.-K., Convergence properties of preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite matrices, Math. Comput., 76, 287-298, (2007) · Zbl 1114.65034
[26] Bai, Z.-Z.; Golub, G. H.; Ng, M. K., On inexact Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, Linear Algebra Appl., 428, 413-440, (2008) · Zbl 1135.65016
[27] Golub, G. H.; Wu, X.; Yuan, J.-Y., SOR-like methods for augmented systems, BIT Numer. Math., 41, 71-85, (2001) · Zbl 0991.65036
[28] Bai, Z.-Z.; Parlett, B. N.; Wang, Z.-Q., On generalized successive overrelaxation methods for augmented linear systems, Numer. Math., 102, 1-38, (2005) · Zbl 1083.65034
[29] Li, Z.; Li, C.-J.; Evans, D. J.; Zhang, T., Two parameter GSOR method for the augmented systems, Int. J. Comput. Math., 82, 1033-1042, (2005) · Zbl 1078.65025
[30] Shao, X.-H.; Li, Z.; Li, C.-J., Modified SOR-like method for the augmented systems, Int. J. Comput. Math., 84, 1653-1662, (2007) · Zbl 1141.65024
[31] Li, J.-C.; Kong, X., Optimal parameters of GSOR-like methods for solving the augmented linear systems, Appl. Math. Comput., 204, 150-161, (2008) · Zbl 1159.65038
[32] Huang, Z.-D.; Zhou, X.-Y., On the minimum convergence factor of a class of GSOR-like methods for augmented systems, Numer. Algor., 70, 113-132, (2015) · Zbl 1327.65061
[33] Li, C.-J.; Li, Z.; Nie, Y.-Y.; Evans, D. J., Generalized AOR method for the augmented systems, Int. J. Comput. Math., 81, 495-504, (2004) · Zbl 1076.65032
[34] Martins, M. M.; Yousif, W.; Santos, J. L., A variant of the AOR method for augmented systems, Math. Comput., 81, 399-417, (2012) · Zbl 1238.65023
[35] Darvishi, M. T.; Hessari, P., Symmetric SOR method for augmented systems, Appl. Math. Comput., 183, 409-415, (2006) · Zbl 1111.65029
[36] Wu, S.-L.; Huang, T.-Z.; Zhao, X.-L., A modified SSOR iterative method for augmented systems, J. Comput. Appl. Math., 228, 424-433, (2009) · Zbl 1167.65016
[37] Zheng, B.; Wang, K.; Wu, Y.-J., SSOR-like methods for saddle point problems, Int. J. Comput. Math., 86, 1405-1423, (2009) · Zbl 1180.65041
[38] Wen, C.; Huang, T.-Z., Modified SSOR-like method for augmented systems, Math. Model. Anal., 16, 475-487, (2011) · Zbl 1234.65025
[39] Zhang, G.-F.; Lu, Q.-H., On generalized symmetric SOR method for augmented systems, J. Comput. Appl. Math., 219, 51-58, (2008) · Zbl 1196.65071
[40] Zhang, L.-T.; Huang, T.-Z.; Cheng, S.-H.; Wang, Y.-P., Convergence of a generalized MSSOR method for augmented systems, J. Comput. Appl. Math., 236, 1841-1850, (2012) · Zbl 1244.65050
[41] Darvishi, M. T.; Hessari, P., A modified symmetric successive overrelaxation method for augmented systems, Comput. Math. Appl., 61, 3128-3135, (2011) · Zbl 1222.65030
[42] Najafi, H. S.; Edalatpanah, S. A., A new modified SSOR iteration method for solving augmented linear systems, Int. J. Comput. Math., 91, 539-552, (2014) · Zbl 1316.65042
[43] Najafi, H. S.; Edalatpanah, S. A., On the modified symmetric successive over-relaxation method for augmented systems, Comput. Appl. Math., 34, 607-617, (2015) · Zbl 1339.65048
[44] Louka, M. A.; Missirlis, N. M., A comparison of the extrapolated successive overrelaxation and the preconditioned simultaneous displacement methods for augmented linear systems, Numer. Math., 131, 517-540, (2015) · Zbl 1330.65055
[45] Li, J.-L.; Huang, T.-Z.; Luo, D., The semi-convergence of generalized SSOR method for singular augmented systems, Int. J. Numer. Anal. Model., 9, 270-275, (2012) · Zbl 1321.65048
[46] Zhang, L.-J.; Zhang, N.-M., Semi-convergence analysis of GMSSOR methods for singular saddle point problems, Comput. Math. Appl., 68, 596-605, (2014) · Zbl 1362.65042
[47] Young, D. M., Iteration Solution for Large Systems, (1971), Academic Press New York
[48] Bi, Y.-H.; Zhang, N.-M.; Zhou, L.-J., On the optimal parameters of GMSSOR method for saddle point problems, Appl. Math. Lett., 55, 54-62, (2016) · Zbl 1338.65080
[49] Chao, Z.; Zhang, N.-M.; Lu, Y.-Z., Optimal parameters of the generalized symmetric SOR method for augmented systems, J. Comput. Appl. Math., 266, 52-60, (2014) · Zbl 1293.65046
[50] Berman, A.; Plemmons, R. J., Nonnegative Matrices in the Mathematical Sciences, (1994), SIAM Philadelphia, PA · Zbl 0815.15016
[51] Chen, Y.-L.; Tan, X.-Y., Semiconvergence criteria of iterations and extrapolated iterations and constructive methods of semiconvergent iteration matrices, Appl. Math. Comput., 167, 930-956, (2005) · Zbl 1082.65036
[52] Zheng, B.; Bai, Z.-Z.; Yang, X., On semi-convergence of parameterized Uzawa methods for singular saddle point problems, Linear Algebra Appl., 431, 808-817, (2009) · Zbl 1173.65026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.