×

zbMATH — the first resource for mathematics

A method for fuzzy soft sets in decision-making based on an ideal solution. (English) Zbl 1425.91118
Summary: In this paper, a decision model based on a fuzzy soft set and ideal solution approaches is proposed. This new decision-making method uses the divide-and-conquer algorithm, and it is different from the existing algorithm (the choice value based approach and the comparison score based approach). The ideal solution is generated according to each attribute (pros or cons of the attributes, with or without constraints) of the fuzzy soft sets. Finally, the weighted Hamming distance is used to compute all possible alternatives and get the final result. The core of the decision process is the design phase, the existing decision models based on soft sets mostly neglect the analysis of attributes and decision objectives. This algorithm emphasizes the correct expression of the purpose of the decision maker and the analysis of attributes, as well as the explicit decision function. Additionally, this paper shows the fact that the rank reversal phenomenon occurs in the comparison score algorithm, and an example is provided to illustrate the rank reversal phenomenon. Experiments indicate that the decision model proposed in this paper is efficient and will be useful for practical problems. In addition, as a general model, it can be extended to a wider range of fields, such as classifications, optimization problems, etc.

MSC:
91B06 Decision theory
03E72 Theory of fuzzy sets, etc.
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Molodtsov, D.; Soft set theory-first results; Comput. Math. Appl.: 1999; Volume 37 ,19-31. · Zbl 0936.03049
[2] Molodtsov, D.; The Theory of Soft Sets; URSS Publ. Moscow.: 2004; .
[3] Maji, P.; Roy, A.R.; Biswas, R.; An application of soft sets in a decision making problem; Comput. Math. Appl.: 2002; Volume 44 ,1077-1083. · Zbl 1044.90042
[4] Qin, K.; Meng, D.; Pei, Z.; Xu, Y.; Combination of interval set and soft set; Int. J. Comput. Intell. Syst.: 2013; Volume 6 ,370-380.
[5] Zhang, X.; On interval soft sets with applications; Int. J. Comput. Intell. Syst.: 2014; Volume 7 ,186-196.
[6] Shao, Y.; Qin, K.; Fuzzy soft sets and fuzzy soft lattices; Int. J. Comput. Intell. Syst.: 2012; Volume 5 ,1135-1147.
[7] Basu, K.; Deb, R.; Pattanaik, P.K.; Soft sets: An ordinal formulation of vagueness with some applications to the theory of choice; Fuzzy Sets Syst.: 1992; Volume 45 ,45-58. · Zbl 0749.90006
[8] Li, Z.; Xie, T.; Roughness of fuzzy soft sets and related results; Int. J. Comput. Intell. Syst.: 2015; Volume 8 ,278-296.
[9] Bustince, H.; Burillo, P.; Vague sets are intuitionistic fuzzy sets; Fuzzy Sets Syst.: 1996; Volume 79 ,403-405. · Zbl 0871.04006
[10] Torra, V.; Hesitant fuzzy sets; Int. J. Comput. Intell. Syst.: 2010; Volume 25 ,529-539. · Zbl 1198.03076
[11] Rodríguez, R.M.; Bedregal, B.; Bustince, H.; Dong, Y.; Farhadinia, B.; Kahraman, C.; Martínez, L.; Torra, V.; Xu, Y.; Xu, Z.; A position and perspective analysis of hesitant fuzzy sets on information fusion in decision making. Towards high quality progress; Inf. Fusion: 2016; Volume 29 ,89-97.
[12] Roy, A.R.; Maji, P.; A fuzzy soft set theoretic approach to decision making problems; J. Comput. Appl. Math.: 2007; Volume 203 ,412-418. · Zbl 1128.90536
[13] Rodríguez, R.M.; Labella, A.; Martínez, L.; An overview on fuzzy modelling of complex linguistic preferences in decision making; Int. J. Comput. Intell. Syst.: 2016; Volume 9 ,81-94.
[14] Kong, Z.; Gao, L.; Wang, L.; Comment on “A fuzzy soft set theoretic approach to decision making problems”; J. Comput. Appl. Math.: 2009; Volume 223 ,540-542. · Zbl 1159.90421
[15] Feng, F.; Jun, Y.B.; Liu, X.; Li, L.; An adjustable approach to fuzzy soft set based decision making; J. Comput. Appl. Math.: 2010; Volume 234 ,10-20. · Zbl 1274.03082
[16] Zadeh, L.A.; Fuzzy sets; Inf. Control: 1965; Volume 8 ,338-353. · Zbl 0139.24606
[17] Bellman, R.E.; Zadeh, L.A.; Decision-making in a fuzzy environment; Manag. Sci.: 1970; Volume 17 ,B-141-B-164. · Zbl 0224.90032
[18] Maji, P.K.; Biswas, R.; Roy, A.R.; Intuitionistic fuzzy soft sets; J. Fuzzy Math.: 2001; Volume 9 ,677-692. · Zbl 1004.03042
[19] Liu, Z.; Qin, K.; Pei, Z.; Liu, J.; On Induced Soft Sets and Topology for the Parameter Set of a Soft Set. Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing (CIT/IUCC/DASC/PICOM); Proceedings of the 2015 IEEE International Conference on Computer and Information Technology: ; ,1349-1353.
[20] Alcantud, J.C.R.; A novel algorithm for fuzzy soft set based decision making from multiobserver input parameter data set; Inf. Fusion: 2016; Volume 29 ,142-148.
[21] Belton, V.; Gear, T.; On a short-coming of Saaty’s method of analytic hierarchies; Omega: 1983; Volume 11 ,228-230.
[22] Barzilai, J.; Golany, B.; AHP rank reversal, normalization and aggregation rules; Inf. Syst. Oper. Res.: 1994; Volume 32 ,57-64. · Zbl 0805.90001
[23] Belton, V.; Gear, T.; The legitimacy of rank reversal-a comment; Omega: 1985; Volume 13 ,143-144.
[24] Belton, V.; Gear, T.; On the meaning of relative importance; J. Multi-Criteria Decis. Anal.: 1997; Volume 6 ,335-338.
[25] Grabisch, M.; Fuzzy integral in multicriteria decision making; Fuzzy Sets Syst.: 1995; Volume 69 ,279-298. · Zbl 0845.90001
[26] Sousa, J.M.; ; Fuzzy Decision Making in Modeling and Control: Singapore 2002; Volume Volume 27 . · Zbl 1015.91019
[27] Hwang, C.L.; Lai, Y.J.; Liu, T.Y.; A new approach for multiple objective decision making; Comput. Oper. Res.: 1993; Volume 20 ,889-899. · Zbl 0781.90058
[28] Medina, J.; Ojeda-Aciego, M.; Multi-adjoint t-concept lattices; Inf. Sci.: 2010; Volume 180 ,712-725. · Zbl 1187.68587
[29] Pozna, C.; Minculete, N.; Precup, R.E.; Kóczy, L.T.; Ballagi, Á.; Signatures: Definitions, operators and applications to fuzzy modelling; Fuzzy Sets Syst.: 2012; Volume 201 ,86-104. · Zbl 1251.93022
[30] Nowaková, J.; Prílepok, M.; Snášel, V.; Medical image retrieval using vector quantization and fuzzy S-tree; J. Med. Syst.: 2017; Volume 41 ,18.
[31] Kumar, A.; Kumar, D.; Jarial, S.K.; A hybrid clustering method based on improved artificial bee colony and fuzzy C-means algorithm; Int. J. Artif. Intell.: 2017; Volume 15 ,40-60.
[32] Hamming, R.W.; Error detecting and error correcting codes; Bell Labs Tech. J.: 1950; Volume 29 ,147-160. · Zbl 1402.94084
[33] Yager, R.R.; Filev, D.P.; Induced ordered weighted averaging operators; IEEE Trans. Syst. Man Cybern. Part B: 1999; Volume 29 ,141-150.
[34] Liu, Z.; Fuzzy-Soft-Sets-Ideal-Solution; ; .
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.