×

Entanglement in a QFT model of neutrino oscillations. (English) Zbl 1425.81091

Summary: Tools of quantum information theory can be exploited to provide a convenient description of the phenomena of particle mixing and flavor oscillations in terms of entanglement, a fundamental quantum resource. We extend such a picture to the domain of quantum field theory where, due to the nontrivial nature of flavor neutrino states, the presence of antiparticles provides additional contributions to flavor entanglement. We use a suitable entanglement measure, the concurrence, that allows extracting the two-mode (flavor) entanglement from the full multimode, multiparticle flavor neutrino states.

MSC:

81T99 Quantum field theory; related classical field theories
81P40 Quantum coherence, entanglement, quantum correlations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bertlmann, R. A.; Grimus, W., Quantum-mechanical interference over macroscopic distances in the \(B^0 \overset{-}{B}^0\) system, Physics Letters B, 392, 3-4, 426-432 (1997)
[2] Bertlmann, R. A.; Grimus, W.; Hiesmayr, B. C., Bell inequality and CP violation in the neutral kaon system, Physics Letters A, 289, 1-2, 21-26 (2001) · Zbl 0972.81519
[3] Di Domenico, A.; Gabriel, A.; Hiesmayr, B. C.; Hipp, F.; Huber, M.; Krizek, G.; Mühlbacher, K.; Radic, S.; Spengler, C.; Theussl, L., Heisenberg’s uncertainty relation and bell inequalities in high energy physics: an effective formalism for unstable two-state systems, Foundations of Physics, 42, 6, 778-802 (2012) · Zbl 1259.81014
[4] Blasone, M.; Dell’Anno, F.; De Siena, S.; Di Mauro, M.; Illuminati, F., Multipartite entangled states in particle mixing, Physical Review D, 77 (2008)
[5] Blasone, M.; Dell’Anno, F.; De Siena, S.; Illuminati, F., Entanglement in neutrino oscillations, Europhysics Letters, 85, 5 (2009) · Zbl 1425.81091
[6] Blasone, M.; Dell’Anno, F.; De Siena, S.; Illuminati, F., Entanglement in quantum field theory: particle mixing and oscillations, Journal of Physics: Conference Series, 442, 1 (2013) · Zbl 1425.81091
[7] Blasone, M.; Dell’Anno, F.; De Siena, S.; Illuminati, F., A field-theoretical approach to entanglement in neutrino mixing and oscillations · Zbl 1425.81091
[8] Kayser, B.; Kopp, J.; Robertson, R. G. H.; Vogel, P., Theory of neutrino oscillations with entanglement, Physical Review D, 82 (2010)
[9] Akhmedov, E. K.; Smirnov, A. Y., Neutrino oscillations: entanglement, energy-momentum conservation and QFT, Foundations of Physics, 41, 8, 1279-1306 (2011) · Zbl 1226.81297
[10] Boyanovsky, D., Short baseline neutrino oscillations: when entanglement suppresses coherence, Physical Review D, 84 (2011)
[11] Lello, L.; Boyanovsky, D.; Holman, R., Entanglement entropy in particle decay, Journal of High Energy Physics, 2013, article 116 (2013)
[12] Ghirardi, G.; Marinatto, L., Criteria for the entanglement of composite systems with identical particles, Fortschritte der Physik, 52, 11-12, 1045-1051 (2004) · Zbl 1054.81013
[13] Benatti, F.; Floreanini, R.; Marzolino, U., Bipartite entanglement in systems of identical particles: the partial transposition criterion, Annals of Physics, 327, 5, 1304-1319 (2012) · Zbl 1242.81022
[14] Benatti, F.; Floreanini, R.; Marzolino, U., Sub-shot-noise quantum metrology with entangled identical particles, Annals of Physics, 325, 4, 924-935 (2010) · Zbl 1186.81015
[15] Zanardi, P., Quantum entanglement in fermionic lattices, Physical Review A, 65 (2002)
[16] Zanardi, P.; Wang, X., Fermionic entanglement in itinerant systems, Journal of Physics A: Mathematical and General, 35, 37, article 7947 (2002) · Zbl 1049.81520
[17] Zanardi, P., Bipartite mode entanglement of bosonic condensates on tunneling graphs, Physical Review A, 67 (2003)
[18] Giorda, P.; Zanardi, P., Mode entanglement and entangling power in bosonic graphs, Physical Review A, 68 (2003)
[19] Ciancio, E.; Giorda, P.; Zanardi, P., Mode transformations and entanglement relativity in bipartite Gaussian states, Physics Letters A, 354, 4, 274-280 (2006)
[20] Zanardi, P.; Lidar, D. A.; Lloyd, S., Quantum tensor product structures are observable induced, Physical Review Letters, 92 (2004) · Zbl 1186.81015
[21] Wiseman, H. M.; Vaccaro, J. A., Entanglement of indistinguishable particles shared between two parties, Physical Review Letters, 91 (2003)
[22] Dowling, M. R.; Doherty, A. C.; Wiseman, H. M., Entanglement of indistinguishable particles in condensed-matter physics, Physical Review A, 79 (2006)
[23] Barnum, H.; Knill, E.; Ortiz, G.; Somma, R.; Viola, L., A subsystem-independent generalization of entanglement, Physical Review Letters, 92 (2004)
[24] Barnum, H.; Ortiz, G.; Somma, R.; Viola, L., A generalization of entanglement to convex operational theories: entanglement relative to a subspace of observables, International Journal of Theoretical Physics, 44, 12, 2127-2145 (2005) · Zbl 1110.81035
[25] Banuls, M.-C.; Cirac, J. I.; Wolf, M. M., Entanglement in fermionic systems, Physical Review A, 76 (2006)
[26] van Enk, S. J., Single-particle entanglement, Physical Review A, 72 (2005)
[27] Cunha, M. O. T.; Dunningham, J. A.; Vedral, V., Entanglement in single-particle systems, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 463, 2085, 2277-2286 (2007) · Zbl 1132.81316
[28] Dunningham, J.; Vedral, V., Nonlocality of a single particle, Physical Review Letters, 99 (2007) · Zbl 1228.81063
[29] Dunningham, J.; Palge, V.; Vedral, V., Entanglement and nonlocality of a single relativistic particle, Physical Review A, 80 (2009)
[30] Heaney, L.; Cabello, A.; Santos, M. F.; Vedral, V., Extreme nonlocality with one photon, New Journal of Physics, 13 (2011) · Zbl 1448.81106
[31] Blasone, M.; Vitiello, G., Quantum field theory of fermion mixing, Annals of Physics, 244, 2, 283-311 (1995) · Zbl 0971.81051
[32] Blasone, M.; Henning, P. A.; Vitiello, G., The exact formula for neutrino oscillations, Physics Letters B: Nuclear, Elementary Particle and High-Energy Physics, 451, 1-2, 140-145 (1999)
[33] Blasone, M.; Jizba, P.; Vitiello, G., Currents and charges for mixed fields, Physics Letters B: Nuclear, Elementary Particle and High-Energy Physics, 517, 3-4, 471-475 (2001) · Zbl 0971.81058
[34] Blasone, M.; Capolupo, A.; Vitiello, G., Quantum field theory of three flavor neutrino mixing and oscillations with CP violation, Physical Review D, 66, 2 (2002)
[35] Giunti, C.; Kim, C. W., Fundamentals of Neutrino Physics and Astrophysics (2007), Oxford, UK: Oxford University Press, Oxford, UK
[36] Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K., Quantum entanglement, Reviews of Modern Physics, 81, 2, 865-942 (2009) · Zbl 1205.81012
[37] Barnum, H.; Linden, N., Monotones and invariants for multi-particle quantum states, Journal of Physics A: Mathematical and General, 34, 35, 6787-6805 (2001) · Zbl 1008.81006
[38] Meyer, D. A.; Wallach, N. R., Global entanglement in multiparticle systems, Journal of Mathematical Physics, 43, 9, 4273-4278 (2002) · Zbl 1060.81506
[39] Brennen, G. K., An observable measure of entanglement for pure states of multi-qubit systems, Quantum Information & Computation, 3, 6, 619-626 (2003) · Zbl 1152.81683
[40] Wei, T.-C.; Goldbart, P. M., Geometric measure of entanglement and applications to bipartite and multipartite quantum states, Physical Review A, 68 (2003)
[41] de Oliveira, T. R.; Rigolin, G.; de Oliveira, M. C., Genuine multipartite entanglement in quantum phase transitions, Physical Review A, 73 (2006)
[42] Blasone, M.; Dell’Anno, F.; de Siena, S.; Illuminati, F., Hierarchies of geometric entanglement, Physical Review A, 77, 6 (2008) · Zbl 1425.81091
[43] Wootters, W. K., Entanglement of formation of an arbitrary state of two qubits, Physical Review Letters, 80, 10, 2245-2248 (1998) · Zbl 1368.81047
[44] Hill, S.; Wootters, W. K., Entanglement of a pair of quantum bits, Physical Review Letters, 78, 26, 5022-5025 (1997)
[45] Ji, C. -R.; Mishchenko, Y., General theory of quantum field mixing, Physical Review D, 65 (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.