zbMATH — the first resource for mathematics

Variational contrast enhancement of gray-scale and RGB images. (English) Zbl 1425.68443
Summary: The aim of this paper is twofold. First, we propose a new method for enhancing the contrast of gray-value images. We use the difference of the average local contrast measures between the original and the enhanced images within a variational framework. This enables the user to intuitively control the contrast level and the scale of the enhanced details. Moreover, our model avoids large modifications of the original image histogram. Thereby it preserves the global illumination of the scene and it can cope with large areas having similar gray values. The minimizer of the proposed functional is computed by a gradient descent algorithm in connection with a polynomial approximation of the average local contrast measure. The polynomial approximation is computed via Bernstein polynomials. In the second part, the approach is extended to a variational enhancement method for color images. The model approximately preserves the hue of the original image and additionally includes a total variation term to correct the possible noise. The method requires no post-  or preprocessing. The minimization problem is solved with a hybrid primal-dual algorithm. Experiments demonstrate the efficiency and the flexibility of the proposed approaches in comparison with state-of-the-art methods.

68U10 Computing methodologies for image processing
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
Full Text: DOI
[1] Abdullah-Al-Wadud, M; Kabir, MH; Dewan, M; Chae, O, A dynamic histogram equalization for image contrast enhancement, IEEE Trans. Consumer Electron., 53, 593-600, (2007)
[2] Adams, A.: Examples: the making of 40 photographs. Bulfinch (1983) · Zbl 0714.65096
[3] Adelson, E.H.: Checkershadow illusion. Available at http://persci.mit.edu/gallery/checkershadow2(1) (1995) · Zbl 1374.94284
[4] Arici, T; Dikbas, S; Altunbasak, Y, A histogram modification framework and its application for image contrast enhancement, IEEE Trans. Image Process., 18, 1921-1935, (2009) · Zbl 1371.94028
[5] Attouch, H; Bolte, J; Svaiter, BF, Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods, Math. Program., 137, 91-129, (2013) · Zbl 1260.49048
[6] Aujol, J.F., Gilboa, G., Papadakis, N.: Fundamentals of non-local total variation spectral theory. In: International Conference on Scale Space and Variational Methods in Computer Vision pp. 66-77 (2015)
[7] Bertalmío, M; Caselles, V; Provenzi, E, Issues about retinex theory and contrast enhancement, Int. J. Comput. Vis., 83, 101-119, (2009)
[8] Bertalmío, M; Caselles, V; Provenzi, E; Rizzi, A, Perceptual color correction through variational techniques, IEEE Trans Image Process., 16, 1058-1072, (2007)
[9] Boccignone, G., Picariello, A.: Multiscale contrast enhancement of medical images. In: IEEE International Conference on Acoustics, Speech, and Signal Processing vol. 4, pp. 2789-2792 (1997)
[10] Celik, T, Two-dimensional histogram equalization and contrast enhancement, Pattern Recognit., 45, 3810-3824, (2012)
[11] Celik, T; Tjahjadi, T, Contextual and variational contrast enhancement, IEEE Trans. Image Process., 20, 3431-3441, (2011) · Zbl 1374.94058
[12] Celik, T; Tjahjadi, T, Automatic image equalization and contrast enhancement using Gaussian mixture modeling, IEEE Trans. Image Process., 21, 145-156, (2012) · Zbl 1372.94032
[13] Chambolle, A; Pock, T, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vis., 40, 120-145, (2011) · Zbl 1255.68217
[14] Chambolle, A., Pock, T.: On the ergodic convergence rates of a first-order primal-dual algorithm. In: preprint (2014). http://www.optimization-online.org/DB_FILE/2014/09/4532.pdf · Zbl 1350.49035
[15] Chan, R., Nikolova, M., Wen, Y.W.: A variational approach for exact histogram specification. In: Scale Space and Variational Methods in Computer Vision, pp. 86-97 (2012)
[16] Chen, SD; Ramli, AR, Contrast enhancement using recursive Mean-separate histogram equalization for scalable brightness preservation, IEEE Trans. Consumer Electron., 49, 1301-1309, (2003)
[17] Coltuc, D; Bolon, P; Chassery, JM, Exact histogram specification, IEEE Trans. Image Process., 15, 1143-1152, (2006)
[18] Ferradans, S; Palma-Amestoy, R; Provenzi, E, An algorithmic analysis of variational models for perceptual local contrast enhancement, Image Process. On Line, 5, 219-233, (2015)
[19] Fitschen, J.H., Nikolova, M., Pierre, F., Steidl, G.: A variational model for color assignment. In: Scale Space and Variational Methods in Computer Vision, pp. 437-448 (2015)
[20] Gatta, C., Rizzi, A., Marini, D.: Ace: An automatic color equalization algorithm. In: Conference on Colour in Graphics, Imaging, and Vision, vol. 1, pp. 316-320 (2002)
[21] Getreuer, P, Automatic color enhancement (ACE) and its fast implementation, Image Process. On Line, 2, 266-277, (2012)
[22] Gilboa, G; Osher, S, Nonlocal operators with applications to image processing, Multiscale Model. Simul., 7, 1005-1028, (2008) · Zbl 1181.35006
[23] Gonzalez, R.C., Wintz, P.: Digital Image Processing, 2nd edn. Addison-Wesley, Reading (2007) · Zbl 0441.68097
[24] Gonzalez, R.C.: Digital Image Processing, 3rd edn. Prentice Hall, Upper Saddle River (2007)
[25] Hummel, R, Image enhancement by histogram transformation, Comput. Graph. Image Process., 6, 184-195, (1977)
[26] Häuser, S., Nikolova, M., Steidl, G.: Hue and range preserving rgb image enhancement (rgb-hp-enhance). Preprint (2015). Documentation for Matlab toolbox · Zbl 1255.68217
[27] Jobson, DJ; Rahman, ZU; Woodell, G, Properties and performance of a center/surround retinex, IEEE Trans. Image Process., 6, 451-462, (1997)
[28] Kaur, M; Kaur, J; Kaur, J, Survey of contrast enhancement techniques based on histogram equalization, Int. J. Adv. Comput. Sci. Appl., 2, 137-141, (2011) · Zbl 1311.42009
[29] Kim, YT, Contrast enhancement using brightness preserving bi-histogram equalization, IEEE Trans. Consumer Electron., 43, 1-8, (1997)
[30] Laine, A; Fan, J; Yang, W, Wavelets for contrast enhancement of digital mammography, IEEE Eng. Med. Biol. Mag., 14, 536-550, (1995)
[31] Land, EH, An alternative technique for the computation of the designator in the retinex theory of color vision, Proc. Natl Acad. Sci., 83, 3078-3080, (1986)
[32] Land, EH; McCann, J, Lightness and retinex theory, J. Opt. Soc. Am., 61, 1-11, (1971)
[33] Li, F; Zeng, T, Variational image fusion with first and second-order gradient, J. Comput. Math., 34, 200-222, (2016) · Zbl 1363.68217
[34] Łojasiewicz, S.: Sur le probleme de la division. Studia Mathematica XVIII, 87-136 (1961) · Zbl 0115.10203
[35] Maini, R; Aggarwal, H, A comprehensive review of image enhancement techniques, J. Comput., 2, 919-940, (2010)
[36] Mignotte, M, An energy-based model for the image edge-histogram specification problem, IEEE Trans. Image Process., 21, 379-386, (2012) · Zbl 1372.94179
[37] Nikolova, M.: A fast algorithm for exact histogram specification. simple extension to colour images. In: Scale Space and Variational Methods in Computer Vision, pp. 174-185 (2013)
[38] Nikolova, M; Steidl, G, Fast hue and range preserving histogram specification: theory and new algorithms for color image enhancement, IEEE Trans. Image Process., 23, 4087-4100, (2014) · Zbl 1374.94283
[39] Nikolova, M; Steidl, G, Fast ordering algorithm for exact histogram specification, IEEE Trans. Image Process., 23, 5274-5283, (2014) · Zbl 1374.94284
[40] Nikolova, M; Wen, YW; Chan, R, Exact histogram specification for digital images using a variational approach, J. Math. Imaging Vis., 46, 309-325, (2013) · Zbl 1329.49077
[41] Osher, S; Rudin, LI, Feature-oriented image enhancement using shock filters, SIAM J. Numer. Anal., 27, 919-940, (1990) · Zbl 0714.65096
[42] Palma-Amestoy, R; Provenzi, E; Bertalmío, M; Caselles, V, A perceptually inspired variational framework for color enhancement, IEEE Trans. Pattern Anal. Mach. Intell., 31, 458-474, (2009)
[43] Papadakis, N; Provenzi, E; Caselles, V, A variational model for histogram transfer of color images, IEEE Trans. Image Process., 20, 1682-1695, (2011) · Zbl 1372.94202
[44] Perona, P; Malik, J, Scale-space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Mach. Intell., 12, 629-639, (1990)
[45] Piella, G, Image fusion for enhanced visualization: a variational approach, Int. J. Comput. Vis., 83, 1-11, (2009)
[46] Pierre, F., Aujol, J.F., Bugeau, A., Ta, V.T.: Luminance-hue specification in the rgb space. In: Scale Space and Variational Methods in Computer Vision, pp. 413-424 (2015) · Zbl 1372.94179
[47] Pierre, F., Migerditichan, P.: Débrumage variationnel. In: XXVème colloque GRETSI, pp. 1-4 (2015)
[48] Pock, T., Chambolle, A., Cremers, D., Bischof, H.: A convex relaxation approach for computing minimal partitions. In: IEEE Conference Computer Vision and Pattern Recognition, pp. 810-817 (2009) · Zbl 0714.65096
[49] Provenzi, E., Caselles, V.: A wavelet perspective on variational perceptually-inspired color enhancement. Int. J. Comput. Vis. 106(2), 153-171 (2014) · Zbl 1328.68281
[50] Provenzi, E; Marini, D; Carli, L; Rizzi, A, Mathematical definition and analysis of the retinex algorithm, J. Opt. Soc. Am. A, 22, 2613-2621, (2005)
[51] Rizzi, A; Gatta, C; Marini, D, A new algorithm for unsupervised global and local color correction, Pattern Recognit. Lett., 24, 1663-1677, (2003)
[52] Rizzi, A; Gatta, C; Marini, D, From retinex to automatic color equalization: issues in developing a new algorithm for unsupervised color equalization, J. Electron. Imaging, 13, 75-84, (2004)
[53] Rudin, LI; Osher, S; Fatemi, E, Nonlinear total variation based noise removal algorithms, Physica D, 60, 259-268, (1992) · Zbl 0780.49028
[54] Sapiro, G; Caselles, V, Histogram modification via differential equations, J. Differ. Equ., 135, 238-268, (1997) · Zbl 0913.35141
[55] Sim, K; Tso, C; Tan, Y, Recursive sub-image histogram equalization applied to gray scale images, Pattern Recognit. Lett., 28, 1209-1221, (2007)
[56] Sugimura, D; Mikami, T; Yamashita, H; Hamamoto, T, Enhancing color images of extremely low light scenes based on rgb/nir images acquisition with different exposure times, IEEE Trans. Image Process., 24, 3586-3597, (2015)
[57] Sun, CC; Ruan, SJ; Shie, MC; Pai, TW, Dynamic contrast enhancement based on histogram specification, IEEE Trans. Image Process., 51, 1300-1305, (2005)
[58] Wan, Y; Shi, D, Joint exact histogram specification and image enhancement through the wavelet transform, IEEE Trans. Image Process., 16, 2245-2250, (2007)
[59] Wang, C; Ye, Z, Brightness preserving histogram equalization with maximum entropy: a variational perspective, IEEE Trans. Image Process., 51, 1326-1334, (2005)
[60] Zhu, M., Chan, T.: An efficient primal-dual hybrid gradient algorithm for total variation image restoration. Tech. rep, UCLA, Center for Applied Math (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.