zbMATH — the first resource for mathematics

Shearer’s point process, the hard-sphere model, and a continuum Lovász local lemma. (English) Zbl 1425.60049
Summary: A point process is \(R\)-dependent if it behaves independently beyond the minimum distance \(R\). In this paper we investigate uniform positive lower bounds on the avoidance functions of \(R\)-dependent simple point processes with a common intensity. Intensities with such bounds are characterised by the existence of Shearer’s point process, the unique \(R\)-dependent and \(R\)-hard-core point process with a given intensity. We also present several extensions of the Lovász local lemma, a sufficient condition on the intensity and \(R\) to guarantee the existence of Shearer’s point process and exponential lower bounds. Shearer’s point process shares a combinatorial structure with the hard-sphere model with radius \(R\), the unique \(R\)-hard-core Markov point process. Bounds from the Lovász local lemma convert into lower bounds on the radius of convergence of a high-temperature cluster expansion of the hard-sphere model. This recovers a classic result of D. Ruelle [Statistical mechanics. Rigorous results. New York etc.: W. A. Benjamin (1969; Zbl 0177.57301)] on the uniqueness of the Gibbs measure of the hard-sphere model via an inductive approach of R. L. Dobrushin [Transl., Ser. 2, Am. Math. Soc. 177, 59–81 (1996; Zbl 0873.60074)].
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
60G60 Random fields
82B05 Classical equilibrium statistical mechanics (general)
05C69 Vertex subsets with special properties (dominating sets, independent sets, cliques, etc.)
Full Text: DOI
[1] Aaronson, J.,Gilat, D. and Keane, M. (1992).On the structure of 1-dependent Markov chains.J. Theoret. Prob.5,545-561. · Zbl 0754.60070
[2] Aaronson, J.,Gilat, D.,Keane, M. and de Valk, V. (1989).An algebraic construction of a class of one-dependent processes.Ann. Prob.17,128-143. · Zbl 0681.60038
[3] Alon, N. and Spencer, J. H. (2008).The Probabilistic Method,3rd edn.John Wiley,Hoboken, NJ. · Zbl 1148.05001
[4] Baddeley, A. J.,van Lieshout, M. N. M. and Møller, J. (1996).Markov properties of cluster processes.Adv. Appl. Prob.28,346-355. · Zbl 0864.60011
[5] Błaszczyszyn, B. and Yogeshwaran, D. (2014).On comparison of clustering properties of point processes.Adv. Appl. Prob.46,1-20. · Zbl 1295.60059
[6] Błaszczyszyn, B. and Yogeshwaran, D. (2015).Clustering comparison of point processes, with applications to random geometric models. In Stochastic Geometry, Spatial Statistics and Random Fields (Lecture Notes Math. 2120),Springer,Cham,pp.31-71. · Zbl 1328.60122
[7] Borodin, A. (2011).Determinantal point processes. In The Oxford Handbook of Random Matrix Theory,Oxford University Press,pp.231-249. · Zbl 1238.60055
[8] Broman, E. I. (2005).One-dependent trigonometric determinantal processes are two-block-factors.Ann. Prob.33,601-609. · Zbl 1067.60010
[9] Burton, R. M.,Goulet, M. and Meester, R. (1993).On 1-dependent processes and k-block factors.Ann. Prob.21,2157-2168. · Zbl 0788.60049
[10] Daley, D. J. and Vere-Jones, D. (2003).An introduction to the Theory of Point Processes: Elementary Theory and Methods,Vol. I,2nd edn.Springer,New York. · Zbl 1026.60061
[11] Daley, D. J. and Vere-Jones, D. (2008).An Introduction to the Theory of Point Processes: General Theory and Structure,Vol. II,2nd edn.Springer,New York. · Zbl 1159.60003
[12] De Valk, V. (1988).The maximal and minimal 2-correlation of a class of 1-dependent 0-1 valued processes.Israel J. Math.62,181-205. · Zbl 0712.60040
[13] De Valk, V. (1993).Hilbert space representations of m-dependent processes.Ann. Prob.21,1550-1570. · Zbl 0802.60034
[14] Dobrushin, R. L. (1996).Estimates of semi-invariants for the Ising model at low temperatures. In Topics in Statistical and Theoretical Physics(Amer. Math. Soc. Transl. Ser. 2 177),American Mathematical Society,Providence, RI,pp.59-81. · Zbl 0873.60074
[15] Eisenbaum, N. (2012).Stochastic order for alpha-permanental point processes.Stoch. Process. Appl.122,952-967. · Zbl 1235.60051
[16] Erdös, P. and Lovász, L. (1975).Problems and results on 3-chromatic hypergraphs and some related questions. In Infinite and Finite Sets: To Paul Erdös on His 60th Birthday(Keszthely, 1973; Colloq. Math. Soc. János Bolyai 10),Vol. II,North-Holland,Amsterdam,pp.609-627.
[17] Fernández, R. and Procacci, A. (2007).Cluster expansion for abstract polymer models. New bounds from an old approach.Commun. Math. Phys.274,123-140. · Zbl 1206.82148
[18] Fernández, R.,Procacci, A. and Scoppola, B. (2007).The analyticity region of the hard sphere gas. Improved bounds.J. Statist. Phys.128,1139-1143. · Zbl 1206.82099
[19] Hofer-Temmel, C. (2015).Shearer’s point process and the hard-sphere model in one dimension.Preprint. Available at http://arxiv.org/abs/1504.02672v1.
[20] Hofer-Temmel, C. and Lehner, F. (2015).Clique trees of infinite locally finite chordal graphs.Preprint. Available at http://arxiv.org/abs/1311.7001v3. · Zbl 1391.05186
[21] Holroyd, A. E. (2014).One-dependent coloring by finitary factors.Preprint. Available at http://arxiv.org/abs/1411.1463v1. · Zbl 1370.60061
[22] Janson, S. (1984).Runs in m-dependent sequences.Ann. Prob.12,805-818. · Zbl 0545.60080
[23] Jensen, T. R. and Toft, B. (1995).Graph Coloring Problems.John Wiley,New York. · Zbl 0855.05054
[24] Kotecký, R. and Preiss, D. (1986).Cluster expansion for abstract polymer models.Commun. Math. Phys.103,491-498. · Zbl 0593.05006
[25] Liggett, T. M.,Schonmann, R. H. and Stacey, A. M. (1997).Domination by product measures.Ann. Prob.25,71-95. · Zbl 0882.60046
[26] Matérn, B. (1960).Spatial Variation: Stochastic Models and Their Application to Some Problems in Forest Surveys and Other Sampling Investigations.Meddelanden Från Statens Skogsforskningsinstitut 49,Stockholm.
[27] Mathieu, P. and Temmel, C. (2012).k-independent percolation on trees.Stoch. Process. Appl.122,1129-1153. · Zbl 1245.82026
[28] Miracle-Solé, S. (2010).On the theory of cluster expansions.Markov Process. Relat. Fields16,287-294. · Zbl 1198.82075
[29] Penrose, O. (1967).Convergence of fugacity expansions for classical systems.In Statistical Mechanics: Foundations and Applications,ed. T. Bak,Benjamin,New York,pp.101-109.
[30] Rolski, T. and Szekli, R. (1991).Stochastic ordering and thinning of point processes.Stoch. Process. Appl.37,299-312. · Zbl 0734.60050
[31] Ruelle, D. (1969).Statistical Mechanics: Rigorous Results.Benjamin,New York. · Zbl 0177.57301
[32] Scott, A. D. and Sokal, A. D. (2005).The repulsive lattice gas, the independent-set polynomial, and the Lovász local lemma.J. Statist. Phys.118,1151-1261. · Zbl 1107.82013
[33] Shearer, J. B. (1985).On a problem of Spencer.Combinatorica5,241-245. · Zbl 0587.60012
[34] Soshnikov, A. (2000).Determinantal random point fields.Uspekhi Mat. Nauk55,107-160. · Zbl 0991.60038
[35] Stoyan, D. and Stoyan, H. (1985).On one of Matérn’s hard-core point process models.Math. Nachr.122,205-214. · Zbl 0578.60047
[36] Teichmann, J.,Ballani, F. and van den Boogaart, K. (2013).Generalizations of Matérn’s hard-core point processes.Spatial Statist.3,33-53.
[37] Temmel, C. (2014).Shearer’s measure and stochastic domination of product measures.J. Theoret. Prob.27,22-40. · Zbl 1320.60067
[38] van Lieshout, M. N. M. and Baddeley, A. J. (1996).A nonparametric measure of spatial interaction in point patterns.Statist. Neerlandica50,344-361. · Zbl 0898.62118
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.