×

A \((2+1)\)-dimensional shallow water equation and its explicit lump solutions. (English) Zbl 1425.35159

Summary: We introduce a new \((2+1)\)-dimensional equation by modifying the potential form of the Calogero-Bogoyavlenskii-Schiff (CBS) equation. By applying the Hirota bilinear method, we construct explicit lump solutions to this new equation and establish necessary and sufficient conditions that guarantee that the solutions are analytic and rationally localized in all directions in space. We also depict the evolution of the profiles of some selected lump solutions with three-dimensional and contour plots. It is immediately observed that the lump solutions generated are solitary wave type solutions as is the case with the KP equation.

MSC:

35Q35 PDEs in connection with fluid mechanics
35C05 Solutions to PDEs in closed form
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Fokas, A. S. and Santini, P. M., Physica D44, 99 (1990).
[2] Lin, J., Lou, S. Y. and Wang, K., Phys. Lett. A287, 257 (2001). · Zbl 0971.37036
[3] Li, Y. S. and Zhang, Y. J., J. Phys. A26, 7487 (1993). · Zbl 0835.35122
[4] Radha, R. and Lakshmanan, M., Phys. Lett. A197(1), 7 (1995). · Zbl 1020.35515
[5] Ablowitz, M. J. and Clarkson, P. A., Solitons, Nonlinear Evolution Equations and Inverse Scattering Transform (Cambridge University Press, London, 1990). · Zbl 0762.35001
[6] Rogers, C. and Shadwick, W. F., Backlund Transformations and Their Applications, Vol. 161, (Academic Press, New York, NY, USA, 1982). · Zbl 0492.58002
[7] Hirota, R., The Direct Method in Soliton Theory (Cambridge University Press, Cambridge, 2004). · Zbl 1099.35111
[8] Fan, E. and Zhang, H., Phys. Lett. A246, 403 (1998). · Zbl 1125.35308
[9] Hu, J., Phys. Lett. A322, 211 (2004). · Zbl 1118.81366
[10] Liu, J. G., Tian, Y. and Zeng, Z. F., AIP Adv.7, 105013 (2017).
[11] Liu, J. G., Tian, Y. and Hu, J. G., Appl. Math. Lett.79, 162 (2018). · Zbl 1459.35071
[12] Zayed, E. M. E. and Gepreel, K. A., J. Math. Phys.50(1), 013502 (2009).
[13] Bogoyavlenskii, O. I., Russ. Math. Surv.45, 1 (1990).
[14] Calogero, F., Lett. Nuovo Cimento14443 (1975).
[15] Schiff, J., Painleve Transcendents \(,\) Their Asyntotics and Physical Applications (New York, Pleum, 1992), p. 393.
[16] Estévez, P. G., Prada, J. and Villarroel, J., J. Phys. A Math. Theor.40(26), 7213 (2007). · Zbl 1123.35067
[17] Satsuma, J. and Ablowitz, M. J., J. Math. Phys.20, 1496 (1979). · Zbl 0422.35014
[18] Ma, W. X., Phys. Lett. A379(36), 1975 (2015). · Zbl 1364.35337
[19] Ma, W. X. and Zhou, Y., J. Diff. Eqs.264, 2633 (2018).
[20] Manakov, S. V.et al., Phys. Lett. A63, 205 (1977).
[21] Gilson, C. R. and Nimmo, J. J. C., Phys. Lett. A147, 472 (1990).
[22] Zhang, J. B. and Ma, W. X., Comput. Math. Appl.74, 591 (2017). · Zbl 1387.35540
[23] Yang, J. Y., Ma, W. X. and Qin, Z. Y., Anal. Math. Phys.8(3), 427 (2018). · Zbl 1403.35261
[24] Zhang, H. Q. and Ma, W. X., Nonlinear Dyn.87(4), 2305 (2017).
[25] Imai, K. and Nozaki, K., Prog. Theor. Phys.96(3), 521 (1996).
[26] Petviashvili, V. I. and Pokhotelov, O. A., Solitary Waves in Plasmas and in the Atmosphere (Gordon and Breach Science Publishers, Philadelphia, 1992). · Zbl 0793.76002
[27] Aranson, I. S.et al., (eds.), Advances in Dynamics, Patterns, Cognition: Challenges in Complexity (Springer, 2017). · Zbl 1372.37004
[28] Pelinovsky, D. E., Stepanyants, Y. A. and Kivshar, Y. S., Phys. Rev. E51(5), 5016 (1995).
[29] Mironov, V. A., Smirnov, A. I. and Smirnov, L. A., J. Exp. Theor. Phys.110(5), 877 (2010).
[30] Potapov, A. I. and Soldatov, I. N., Sov. Phys. Acoust.30, 486 (1984).
[31] Tauchert, T. R. and Guzelsu, A. N., J. Appl. Mech.39(1), 98 (1972).
[32] Li, B. and Chen, Y., Czech. J. Phys.54(5), 517 (2004).
[33] Chen, S. T. and Ma, W. X., Comput. Math. Appl.76(7), 1680 (2018). · Zbl 1434.35153
[34] Calogero, F. and Degasperis, A., Nuovo Cimento B31, 201 (1976).
[35] Schiff, J., Integrability of Chern-Simons-Higgs vortex equations and a reduction of the self-dual Yang-Mills equations to three dimensions, in Painlevé Transcendents, eds. Levi, D. and Winternitz, P., , Vol. 278 (Plenum Press, New York, 1992), pp. 393-405. · Zbl 0875.35082
[36] Bogoyavlenskii, O. I., Math USSR IZV34(2), 245 (1990).
[37] Estévez, P. G., Lejarreta, J. D. and Sardón, C., Nonlinear Dyn.87(1), 13 (2017). · Zbl 1371.37124
[38] Minzoni, A. A. and Smyth, N. E., Wave Motion24, 291 (1996). · Zbl 0936.76502
[39] Kath, W. L. and Smyth, N. F., Phys. Rev. E51(1), 661 (1995).
[40] Feng, B. F. and Mitsui, T., J. Comput. Appl. Math.90, 95 (1998). · Zbl 0907.65085
[41] Tang, Y. N., Tao, S. Q. and Guan, Q., Comput. Math. Appl.72(9), 2334 (2016). · Zbl 1372.35268
[42] Yang, J. Y. and Ma, W. X., Nonlinear Dyn.89, 1539 (2017).
[43] Yang, J. Y., Ma, W. X. and Qin, Z. Y., East Asian J. Appl. Math.8, 224 (2017).
[44] Ma, W. X., Phys. Lett. A301, 35 (2002).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.