zbMATH — the first resource for mathematics

Performance analysis of preemptive priority retrial queueing system with disaster under working breakdown services. (English) Zbl 1423.90058
Summary: In this investigation, a novel sort of retrial queueing system with working breakdown services is introduced. Two distinct kinds of customers are considered, which are priority and ordinary customers. The normal busy server may become inadequate due to catastrophes at any time which cause the major server to fail. At a failure moment, the major server is sent to be fixed and the server functions at a lower speed (called the working breakdown period) during the repair period. The probability generating functions (PGF) of the system size is found using the concepts of the supplementary variable technique (SVT). The impact of parameters in system performance measures and cost optimization are examined numerically.

90B22 Queues and service in operations research
Full Text: DOI
[1] Artalejo, J.R.; Accessible bibliography on retrial queues: Progress in 2000-2009; Math. Comput. Model.: 2010; Volume 51 ,1071-1081. · Zbl 1198.90011
[2] Artalejo, J.R.; Corral, A.G.; ; Retrial Queueing Systems: Berlin, Germany 2008; . · Zbl 1161.60033
[3] Choi, B.D.; Park, K.K.; The M/G/1 retrial queue with Bernoulli schedule; Queueing Syst.: 1990; Volume 7 ,219-228. · Zbl 0706.60089
[4] Wu, J.; Lian, W.; A single-server retrial G-queue with priority and unreliable server under Bernoulli vacation schedule; Comp. Ind. Eng.: 2013; Volume 64 ,84-93.
[5] Gao, S.; A preemptive priority retrial queue with two classes of customers and general retrial times; Oper. Res.: 2015; Volume 15 ,233-251.
[6] Peng, Y.; On the discrete-time Geo/G/1 retrial queueing system with preemptive resume and Bernoulli feedback; Opsearch: 2016; Volume 53 ,116-130. · Zbl 1360.90099
[7] Servi, L.D.; Finn, S.G.; M/M/1 queues with working vacations; Perform. Eval.: 2002; Volume 50 ,41-52.
[8] Wu, D.; Takagi, H.; M/G/1 queue with multiple working vacations; Perform. Eval.: 2006; Volume 63 ,654-681.
[9] Van Do, T.; M/M/1 retrial queue with working vacations; Acta Inform.: 2010; Volume 47 ,67-75. · Zbl 1185.90046
[10] Chandrasekaran, V.M.; Indhira, K.; Saravanarajan, M.C.; Rajadurai, P.; A survey on working vacation queueing models; Int. J. Pure Appl. Math.: 2016; Volume 106 ,33-41.
[11] Arivudainambi, D.; Godhandaraman, P.; Rajadurai, P.; Performance analysis of a single server retrial queue with working vacation; Opsearch: 2014; Volume 51 ,434-462. · Zbl 1332.90074
[12] Gao, S.; Wang, J.; Li, W.; An M/G/1 retrial queue with general retrial times, working vacations and vacation interruption; Asia-Pac. J. Oper. Res.: 2014; Volume 31 ,06-31. · Zbl 1291.90071
[13] Rajadurai, P.; Chandrasekaran, V.M.; Saravanarajan, M.C.; Analysis of an unreliable retrial G-queue with working vacations and vacation interruption under Bernoulli schedule; Ain Shams Eng. J.: 2018; Volume 9 ,56-580.
[14] Gao, S.; Liu, Z.; An M/G/1 queue with single working vacation and vacation interruption under Bernoulli schedule; Appl. Math. Model.: 2013; Volume 37 ,1564-1579. · Zbl 1351.90076
[15] Zhan, M.; Liu, Q.; An M/G/1 G-queue with server breakdown, working vacations and vacation interruption; Opsearch: 2015; Volume 52 ,256-270. · Zbl 1332.90087
[16] Kalidass, K.; Ramanath, K.; A queue with working breakdowns; Comput. Ind. Eng.: 2012; Volume 63 ,779-783.
[17] Kim, B.K.; Lee, D.H.; The M/G/1 queue with disasters and working breakdowns; Appl. Math. Model.: 2014; Volume 38 ,1788-1798. · Zbl 1427.90094
[18] Ma, Z.; Cui, G.; Wang, P.; Hao, Y.; M/M/1 vacation queueing system with working breakdowns and variable arrival rate; J. Comput. Inf. Syst.: 2015; Volume 11 ,1545-1552.
[19] Deepa, B.; Kalidass, K.; An M/M/1/N Queue with Working Breakdowns and Vacations; Int. J. Pure Appl. Math.: 2018; Volume 119 ,859-873.
[20] Jiang, T.; Liu, L.; The GI/M/1 queue in a multi-phase service environment with disasters and working breakdowns; Int. J. Comput. Math.: 2017; Volume 94 ,707-726. · Zbl 1365.60077
[21] Liu, Z.; Song, Y.; The MX/M/1 queue with working breakdown; Rairo Oper. Res. Rech. Opér.: 2014; Volume 48 ,399-413. · Zbl 1297.90019
[22] Rajadurai, P.; Sensitivity analysis of an M/G/1 retrial queueing system with disaster under working vacations and working breakdowns; Rairo Oper. Res.: 2018; Volume 52 ,35-54. · Zbl 1394.60094
[23] Anandakumar, S.; Ilango, P.; PRIN: A Priority-Based Energy Efficient MAC Protocol for Wireless Sensor Networks Varying the Sample Inter-Arrival Time; Wirel. Pers. Commun.: 2017; Volume 92 ,863-881.
[24] Yang, D.Y.; Wu, C.H.; Cost-minimization analysis of a working vacation queue with N-policy and server breakdowns; Comp. Ind. Eng.: 2015; Volume 82 ,151-158.
[25] Pakes, A.G.; Some conditions for Ergodicity and recurrence of Markov chains; Oper. Res.: 1969; Volume 17 ,1058-1061. · Zbl 0183.46902
[26] Sennott, L.I.; Humblet, P.A.; Tweedi, R.L.; Mean drifts and the non Ergodicity of Markov chains; Oper. Res.: 1983; Volume 31 ,783-789. · Zbl 0525.60072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.