zbMATH — the first resource for mathematics

A parallel meshless dynamic cloud method on graphic processing units for unsteady compressible flows past moving boundaries. (English) Zbl 1423.76347
Summary: This paper presents an effort to implement a recently proposed meshless dynamic cloud method [H. Wang et al., Int. J. Numer. Methods Fluids 64, No. 1, 98–118 (2010; Zbl 1375.76140)] on modern high-performance graphic processing units (GPUs) with the compute unified device architecture (CUDA) programming model. Within the framework of the meshless method, clouds of points used as basic computational stencils are distributed in the whole flow domain. The spatial derivatives of the governing equations are discretised by the moving-least square scheme on every cloud of points. Roe’s approximate Riemann solver is adopted to compute the convective flux. A dual-time stepping approach, which iterates in physical and pseudo temporal spaces, is employed to obtain the time-accurate solution. Simulation of steady compressible flows over a fixed aerofoil is firstly carried out to verify the GPU implementation of the method. Then it is extended to compute unsteady flows past oscillatory aerofoils. Numerical outcomes are compared with experimental and/or other reference results to validate the method. Significant performance speedup of more than an order of magnitude is verified by the numerical results. Systematic analysis shows that GPU is more energy efficient than CPU for solving aerodynamic problems. This demonstrates the potential of the proposed method to solve fluid-structure interaction problems.

76M25 Other numerical methods (fluid mechanics) (MSC2010)
65M20 Method of lines for initial value and initial-boundary value problems involving PDEs
65M25 Numerical aspects of the method of characteristics for initial value and initial-boundary value problems involving PDEs
65Y05 Parallel numerical computation
65Y10 Numerical algorithms for specific classes of architectures
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76N15 Gas dynamics (general theory)
Full Text: DOI
[2] Löhner, R.; Sacco, C.; Oñate, E.; Idelsohn, S., A finite point method for compressible flow, Internat. J. Numer. Methods Engrg., 53, 8, 1765-1779 (2002) · Zbl 1004.76068
[3] Ma, Z.; Chen, H.; Zhou, C., A study of point moving adaptivity in gridless method, Comput. Methods Appl. Mech. Engrg., 197, 21-24, 1926-1937 (2008) · Zbl 1194.76210
[4] Morinishi, K., An implicit gridless type solver for the Navier-Stokes equations, Comput. Fluid Dyn. J., 551-560 (2001), (special issue)
[5] Munikrishna, N.; Balakrishnan, N., Turbulent flow computations on a hybrid Cartesian point distribution using meshless solver LSFD-U, Comput. & Fluids, 40, 118-138 (2011) · Zbl 1245.76105
[6] Sridar, D.; Balakrishnan, N., An upwind finite difference scheme for meshless solvers, J. Comput. Phys., 189, 1, 1-29 (2003) · Zbl 1023.76034
[7] Ortega, E.; Oñate, E.; Idelsohn, S., A finite point method for adaptive three-dimensional compressible flow calculations, Internat. J. Numer. Methods Fluids, 60, 9, 937-971 (2009) · Zbl 1166.76043
[8] Wang, H.; Chen, H.-Q.; Periaux, J., A study of gridless method with dynamic clouds of points for solving unsteady CFD problems in aerodynamics, Internat. J. Numer. Methods Fluids, 64, 1, 98-118 (2010) · Zbl 1375.76140
[9] Wang, H.; Leskinen, J.; Lee, D.-S.; Periaux, J., Active flow control of airfoil using mesh/meshless methods coupled to hierarchical genetic algorithms for drag reduction design, Eng. Comput., 30, 4, 562-580 (2013)
[10] Ortega, E.; Oñate, E.; Idelsohn, S.; Flores, R., A meshless finite point method for three-dimensional analysis of compressible flow problems involving moving boundaries and adaptivity, Internat. J. Numer. Methods Fluids, 73, 323-343 (2013)
[11] Ortega, E.; Onate, E.; Idelsohn, S.; Flores, R., Comparative accuracy and performance assessment of the finite point method in compressible flow problems, Comput. & Fluids, 89, 53-65 (2014) · Zbl 1391.76354
[12] Karatarakis, A.; Karakitsios, P.; Papadrakakis, M., GPU accelerated computation of the isogeometric analysis stiffness matrix, Comput. Methods Appl. Mech. Engrg., 269, 334-355 (2014) · Zbl 1296.65160
[13] Papadrakakis, M.; Stavroulakis, G.; Karatarakis, A., A new era in scientific computing: domain decomposition methods in hybrid CPU-GPU architectures, Comput. Methods Appl. Mech. Engrg., 200, 13-16, 1490-1508 (2011) · Zbl 1228.74092
[14] Bard, C. M.; Dorelli, J. C., A simple GPU-accelerated two-dimensional MUSCL-Hancock solver for ideal magnetohydrodynamics, J. Comput. Phys., 259, 444-460 (2014) · Zbl 1349.76587
[15] Liang, S.; Liu, W.; Yuan, L., Solving seven-equation model for compressible two-phase flow using multiple GPUs, Comput. & Fluids, 99, 156-171 (2014) · Zbl 1391.76425
[16] Corrigan, A.; Camelli, F. F.; Löhner, R.; Wallin, J., Running unstructured grid-based CFD solvers on modern graphics hardware, Internat. J. Numer. Methods Fluids, 66, 2, 221-229 (2011) · Zbl 1394.76084
[17] Asouti, V. G.; Trompoukis, X. S.; Kampolis, I. C.; Giannakoglou, K. C., Unsteady CFD computations using vertex-centered finite volumes for unstructured grids on graphics processing units, Internat. J. Numer. Methods Fluids, 67, 2, 232-246 (2011) · Zbl 1269.76072
[18] Kampolis, I.; Trompoukis, X.; Asouti, V.; Giannakoglou, K., CFD-based analysis and two-level aerodynamic optimization on graphics processing units, Comput. Methods Appl. Mech. Engrg., 199, 712-722 (2010) · Zbl 1227.76056
[19] Ma, Z.; Wang, H.; Pu, S., GPU computing of compressible flow problems by a meshless method with space-filling curves, J. Comput. Phys., 263, 113-135 (2014) · Zbl 1349.76505
[20] Roe, P., Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys., 43, 2, 357-372 (1981) · Zbl 0474.65066
[22] Liu, X.; Qin, N.; Xia, H., Fast dynamic grid deformation based on delaunay graph mapping, J. Comput. Phys., 211, 2, 405-423 (2006) · Zbl 1138.76405
[27] Landon, R., NACA0012 Oscillatory and Transient Pitching, Tech. Rep., AGARD Report 702 (1982)
[28] Batina, J. T., Unsteady Euler airfoil solutions using unstructured dynamic meshes, AIAA J., 28, 1381-1388 (1990)
[29] Kirshman, D.; Liu, F., Flutter prediction by an Euler method on non-moving Cartesian grids with gridless boundary conditions, Comput. & Fluids, 35, 6, 571-586 (2006) · Zbl 1160.76379
[30] Davis, S., NACA 64A010 (NASA AMES Model) Oscillatory Pitiching Tech. Rep., AGARD-R-702 (1982)
[31] Liu, F.; Ji, S., Unsteady flow calculations with a multigrid Navier-Stokes method, AIAA J., 34, 2047-2053 (1996) · Zbl 0904.76059
[33] Hsu, J. M.-J., An implicit-explicit flow solver for complex unsteady flows (2004), Stanford University, (Ph.D. thesis)
[34] Wang, G.; Sun, Y.dan; Ye, Z.yin, Gridless solution method for two-dimensional unsteady flow, Chin. J. Aeronaut., 18, 1, 8-14 (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.