×

zbMATH — the first resource for mathematics

The numerical simulations based on the NND finite difference scheme for shallow water wave equations including sediment concentration. (English) Zbl 1423.76316
Summary: In this study, a numerical model based on the non-oscillatory and non-free parameter dissipation (NND) finite difference scheme for shallow water wave equations including sediment concentration is established in order to simulate the phenomena for dam-break flow and the development of alluvial plain in an estuary. Some numerical experiments show that the numerical model is feasible and efficient for simulating the phenomena for dam-break flow and the development of alluvial plain in an estuary.

MSC:
76M20 Finite difference methods applied to problems in fluid mechanics
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
76D99 Incompressible viscous fluids
86A05 Hydrology, hydrography, oceanography
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] de Saint-Venant, A. J.C., Théorie du mouvement non permanent des eaux, avec application aux crues des rivir̀res et à l’introduction des marées dans leur lit, C. R. Acad. Sci. Paris, 73, 147-154, (1871) · JFM 03.0482.04
[2] Giovangigli, V.; Tran, B., Mathematical analysis of a Saint-Venant model with variable temperature, Math. Models Methods Appl. Sci., 20, 8, 1251-1297, (2010) · Zbl 1204.35134
[3] Anatasiou, K.; Chan, C. T., Solution of the 2d shallow water equations using the finite volume method on unstructures triangular meshes, Internat. J. Numer. Methods Fluids, 24, 1225-1245, (1997) · Zbl 0886.76064
[4] Bermudez, A.; Vazquez, M. E., Upwind methods for hyperbolic conservation laws with source terms, Comput. Fluids, 23, 1049-1071, (1994) · Zbl 0816.76052
[5] Cai, Y.; Navon, I. M., Parallel block preconditioning techniques for the numerical simulation of the shallow water flow using finite element methods, J. Comput. Phys., 122, 39-50, (1995) · Zbl 0840.76031
[6] Chen, X.; Navon, I. M., Optimal control of a finite-element limited-area shallow-water equations model, Stud. Inf. Control, 18, 1, 41-62, (2009)
[7] Liang, A. J.; Hsu, T. W., Least-squares finite-element method for shallow-water equations with source terms, Acta Mech. Sin., 25, 597-610, (2009) · Zbl 1269.76071
[8] Lu, C. N.; Qiu, J. X., Simulations of shallow water equations with finite difference Lax-Wendroff weighted essentially non-oscillatory schemes, J. Sci. Comput., 47, 3, 281-302, (2011) · Zbl 1358.76017
[9] Navon, I. M., Finite-element simulation of the shallow-water equations model on a limited area domain, Appl. Math. Model., 3, 1, 337-348, (1979) · Zbl 0438.76017
[10] Qiu, J. X.; Shu, C. W., Finite difference WENO schemes with Lax-Wendroff-type time discretizations, SIAM J. Sci. Comput., 24, 2185-2198, (2003) · Zbl 1034.65073
[11] Rogers, B. D.; Borthwick, A. G.L.; Taylor, P. H., Mathematical balancing of flux gradient and source terms prior to using roe’s approximate Riemann solver, J. Comput. Phys., 192, 422-451, (2003) · Zbl 1047.76539
[12] Vukovic, S.; Sopta, L., ENO and WENO schemes with the exact conservation property for one dimensional shallow water equations, J. Comput. Phys., 179, 593-621, (2002) · Zbl 1130.76389
[13] Wang, B., An explicit multi-conservation finite-difference scheme for shallow-water-wave equation, J. Comput. Math., 26, 3, 404-409, (2008) · Zbl 1174.76014
[14] Wang, J. S.; Liu, R. X., The composite finite volume method on unstructured meshes for 2D shallow water equations, Internat. J. Numer. Methods Fluids, 37, 933-949, (2001) · Zbl 1055.76532
[15] Xing, Y.; Shu, C. W., High order finite difference WENO schemes with the exact conservation property for the shallow water equations, J. Comput. Phys., 208, 206-227, (2005) · Zbl 1114.76340
[16] Xing, Y.; Shu, C. W., High order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms, J. Comput. Phys., 214, 567-598, (2006) · Zbl 1089.65091
[17] Xing, Y.; Zhang, X.; Shu, C. W., Positivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations, Adv. Water Resour., 33, 1476-1493, (2010)
[18] Yoon, S. B.; Lim, C. H.; Choi, L., Dispersion-correction finite difference model for simulation of transoceanic tsunamis, Terr. Atmos. Ocean. Sci., 18, 1, 31-53, (2007)
[19] Yuan, M.; Song, S. H., A nonoscillatory finite volume method for 2D shallow water equations on two-dimensional unstructured meshes, J. Numer. Methods Comput. Appl., 29, 1, 49-55, (2008) · Zbl 1174.76341
[20] Zhou, J. G.; Causon, D. M.; Mingham, C. G.; Ingram, D. M., The surface gradient method for the treatment of source terms in the shallow-water equations, J. Comput. Phys., 168, 1-25, (2001) · Zbl 1074.86500
[21] Wang, J. S.; Ni, H. G.; He, Y. S., Finite-difference TVD scheme for computation of dam-break problems, J. Hydraul. Eng., 126, 4, 253-262, (2000)
[22] Vosoughifar, H. R.; Dolatshah, A.; Shokouhi, S. K.S., Discretization of multidimensional mathematical equations of dam break phenomena using a novel approach of finite volume method, J. Appl. Math., 2013, 1-12, (2013) · Zbl 1266.65150
[23] Zeng, Q. C., Silt sedimentation and relevant engineering problem-an example of natural cybernetics, (Proceedings of the Third International Congress on Industrial and Applied Mathematics, ICIAM95 held in Hamburg, (1995), Akademie Verlag), 463-487 · Zbl 0849.76091
[24] Zhu, J.; Zeng, Q. C.; Guo, D. J.; Liu, Z., Optimal control problems related to the navigation channel engineering, Sci. China E, 40, 1, 82-88, (1997) · Zbl 0883.49027
[25] Luo, Z. D.; Zhu, J.; Zeng, Q. C.; Xie, Z. H., Mixed finite element methods for shallow water equations including current and silt sedimentation (I): the time continuous case, Appl. Math. Mech., 25, 1, 80-92, (2004) · Zbl 1141.76424
[26] Luo, Z. D.; Zhu, J.; Zeng, Q. C.; Xie, Z. H., Mixed finite element methods for shallow water equations including current and silt sedimentation (II): the discrete-case alone characteristics, Appl. Math. Mech., 25, 2, 186-201, (2004) · Zbl 1145.76404
[27] Li, G. S.; Wang, H. L.; Liao, H. P., Simulation on seasonal transport variations and mechanisms of suspended sediment discharged from the yellow river to the bohai sea, J. Geogr. Sci., 20, 6, 923-937, (2010)
[28] Zhang, H. X., A non-oscillatory and non-free parameter dissipation difference scheme, Acta Aerodyn. Sin., 6, 2, 143-165, (1988)
[29] Chung, T., Computational fluid dynamics, (2002), Cambridge University Press Cambridge · Zbl 1037.76001
[30] Liu, R. X.; Shu, C. W., Several new methods for computational fluid mechanics (in Chinese), (2003), Science Press Beijing
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.