×

zbMATH — the first resource for mathematics

Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume schemes with time-accurate local time stepping for hyperbolic conservation laws. (English) Zbl 1423.76296
Summary: In this article a new high order accurate cell-centered Arbitrary-Lagrangian-Eulerian (ALE) Godunov-type finite volume method with time-accurate local time stepping (LTS) is presented. The method is by construction locally and globally conservative. The scheme is based on a one-step predictor-corrector methodology in space-time and uses three main building blocks: First, a high order piecewise polynomial WENO reconstruction, to obtain a high order data representation in space from the known cell averages of the underlying finite volume scheme. Second, a high order space-time Galerkin predictor step based on a weak formulation of the governing PDE on moving control volumes. Third, a high order one-step finite volume scheme, based directly on the integral formulation of the conservation law in space-time. The algorithm being entirely based on space-time control volumes naturally allows for hanging nodes also in time, hence in this framework the implementation of a consistent and conservative time-accurate LTS becomes very natural and simple. The method is validated on some classical shock tube problems for the Euler equations of compressible gas dynamics and the magnetohydrodynamics equations (MHD). The performance of the new scheme is compared with a classical high order ALE finite volume scheme based on global time stepping. To the knowledge of the author, this is the first high order accurate Lagrangian finite volume method ever presented together with a conservative and time-accurate local time stepping feature.

MSC:
76M12 Finite volume methods applied to problems in fluid mechanics
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
35L65 Hyperbolic conservation laws
76M20 Finite difference methods applied to problems in fluid mechanics
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
Software:
ReALE
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Munz, C. D., On Godunov-type schemes for Lagrangian gas dynamics, SIAM J. Numer. Anal., 31, 17-42, (1994) · Zbl 0796.76057
[2] Maire, P. H.; Abgrall, R.; Breil, J.; Ovadia, J., A cell-centered Lagrangian scheme for two-dimensional compressible flow problems, SIAM J. Sci. Comput., 29, 1781-1824, (2007) · Zbl 1251.76028
[3] Maire, P.-H., A unified sub-cell force-based discretization for cell-centered Lagrangian hydrodynamics on polygonal grids, Internat. J. Numer. Methods Fluids, 65, 1281-1294, (2011) · Zbl 1429.76089
[4] Maire, P.-H., A high-order one-step sub-cell force-based discretization for cell-centered Lagrangian hydrodynamics on polygonal grids, Comput. & Fluids, 46, 1, 341-347, (2011) · Zbl 1433.76137
[5] Maire, P. H., A high-order cell-centered Lagrangian scheme for compressible fluid flows in two-dimensional cylindrical geometry, J. Comput. Phys., 228, 6882-6915, (2009) · Zbl 1261.76021
[6] Després, B.; Mazeran, C., Lagrangian gas dynamics in two-dimensions and Lagrangian systems, Arch. Ration. Mech. Anal., 178, 327-372, (2005) · Zbl 1096.76046
[7] Carré, G.; Del Pino, S.; Després, B.; Labourasse, E., A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension, J. Comput. Phys., 228, 5160-5183, (2009) · Zbl 1168.76029
[8] Loubère, R.; Maire, P. H.; Váchal, P., A second-order compatible staggered Lagrangian hydrodynamics scheme using a cell-centered multidimensional approximate Riemann solver, Procedia Computer Science, 1, 1931-1939, (2010) · Zbl 1432.76206
[9] Sambasivan, S. K.; Shashkov, M. J.; Burton, D. E., A finite volume cell-centered Lagrangian hydrodynamics approach for solids in general unstructured grids, Internat. J. Numer. Methods Fluids, 72, 770-810, (2013)
[10] Bochev, P.; Ridzal, D.; Shashkov, M. J., Fast optimization-based conservative remap of scalar fields through aggregate mass transfer, J. Comput. Phys., 246, 37-57, (2013) · Zbl 1349.65054
[11] Berndt, M.; Breil, J.; Galera, S.; Kucharik, M.; Maire, P. H.; Shashkov, M. J., Two-step hybrid conservative remapping for multimaterial arbitrary Lagrangian-Eulerian methods, J. Comput. Phys., 230, 6664-6687, (2011) · Zbl 1408.65077
[12] Kucharik, M.; Shashkov, M. J., One-step hybrid remapping algorithm for multi-material arbitrary Lagrangian-Eulerian methods, J. Comput. Phys., 231, 2851-2864, (2012) · Zbl 1323.74108
[13] Liska, R.; Shashkov, M. J.; Váchal, P.; Wendroff, B., Synchronized flux corrected remapping for ALE methods, Comput. & Fluids, 46, 312-317, (2011) · Zbl 1433.76135
[14] Kucharik, M.; Breil, J.; Galera, S.; Maire, P. H.; Berndt, M.; Shashkov, M. J., Hybrid remap for multi-material ALE, Comput. & Fluids, 46, 293-297, (2011) · Zbl 1433.76133
[15] Loubère, R.; Maire, P. H.; Shashkov, M., Reale: A reconnection arbitrary-Lagrangian-Eulerian method in cylindrical geometry, Comput. & Fluids, 46, 59-69, (2011) · Zbl 1305.76066
[16] Cheng, J.; Shu, C. W., A high order ENO conservative Lagrangian type scheme for the compressible Euler equations, J. Comput. Phys., 227, 1567-1596, (2007) · Zbl 1126.76035
[17] Liu, W.; Cheng, J.; Shu, C. W., High order conservative Lagrangian schemes with Lax Wendroff type time discretization for the compressible Euler equations, J. Comput. Phys., 228, 8872-8891, (2009) · Zbl 1287.76181
[18] Cheng, J.; Shu, C. W., A cell-centered Lagrangian scheme with the preservation of symmetry and conservation properties for compressible fluid flows in two-dimensional cylindrical geometry, J. Comput. Phys., 229, 7191-7206, (2010) · Zbl 1425.35142
[19] Cheng, J.; Toro, E. F., A 1D conservative Lagrangian ADER scheme, Chin. J. Comput. Phys., 30, 501-508, (2013)
[20] Harten, A.; Engquist, B.; Osher, S.; Chakravarthy, S., Uniformly high order essentially non-oscillatory schemes, III, J. Comput. Phys., 71, 231-303, (1987) · Zbl 0652.65067
[21] Boscheri, W.; Dumbser, M., Arbitrary-Lagrangian-Eulerian one-step WENO finite volume schemes on unstructured triangular meshes, Commun. Comput. Phys., 14, 1174-1206, (2013) · Zbl 1388.65075
[22] Dumbser, M.; Boscheri, W., High-order unstructured Lagrangian one-step WENO finite volume schemes for non-conservative hyperbolic systems: applications to compressible multi-phase flows, Comput. & Fluids, 86, 405-432, (2013) · Zbl 1290.76081
[23] López Ortega, A.; Scovazzi, G., A geometrically-conservative, synchronized, flux-corrected remap for arbitrary Lagrangian-Eulerian computations with nodal finite elements, J. Comput. Phys., 230, 6709-6741, (2011) · Zbl 1284.76255
[24] Scovazzi, G., Lagrangian shock hydrodynamics on tetrahedral meshes: A stable and accurate variational multiscale approach, J. Comput. Phys., 231, 8029-8069, (2012)
[25] Flaherty, J.; Loy, R.; Shephard, M.; Szymanski, B.; Teresco, J.; Ziantz, L., Adaptive local refinement with octree load-balancing for the parallel solution of three-dimensional conservation laws, J. Parallel Distrib. Comput., 47, 139-152, (1997)
[26] Dumbser, M.; Käser, M.; Toro, E. F., An arbitrary high order discontinuous Galerkin method for elastic waves on unstructured meshes V: local time stepping and \(p\)-adaptivity, Geophys. J. Int., 171, 695-717, (2007)
[27] Taube, A.; Dumbser, M.; Munz, C. D.; Schneider, R., A high order discontinuous Galerkin method with local time stepping for the Maxwell equations, Int. J. Numer. Modelling, Electron. Netw. Devices Fields, 22, 77-103, (2009) · Zbl 1156.78012
[28] Lörcher, F.; Gassner, G.; Munz, C. D., A discontinuous Galerkin scheme based on a space-time expansion. I. inviscid compressible flow in one space dimension, J. Sci. Comput., 32, 175-199, (2007) · Zbl 1143.76047
[29] Gassner, G.; Lörcher, F.; Munz, C. D., A discontinuous Galerkin scheme based on a space-time expansion II. viscous flow equations in multi dimensions, J. Sci. Comput., 34, 260-286, (2008) · Zbl 1218.76027
[30] Krivodonova, L., An efficient local time-stepping scheme for solution of nonlinear conservation laws, J. Comput. Phys., 229, 8537-8551, (2010) · Zbl 1201.65171
[31] Utzmann, J.; Schwartzkopff, T.; Dumbser, M.; Munz, C. D., Heterogeneous domain decomposition for computational aeroacoustics, AIAA J., 44, 2231-2250, (2006)
[32] Castro, C. E.; Käser, M.; Toro, E. F., Space-time adaptive numerical methods for geophysical applications, Phil. Trans. R. Soc. A, 367, 4613-4631, (2009) · Zbl 1192.86006
[33] Baeza, A.; Mulet, P., Adaptive mesh refinement techniques for high-order shock capturing schemes for multi-dimensional hydrodynamic simulations, Internat. J. Numer. Methods Fluids, 52, 455-471, (2006) · Zbl 1370.76116
[34] Baeza, A.; Martínez-Gavara, A.; Mulet, P., Adaptation based on interpolation errors for high order mesh refinement methods applied to conservation laws, Appl. Numer. Math., 62, 278-296, (2012) · Zbl 1241.65080
[35] Bürger, R.; Mulet, P.; Villada, L. M., Spectral weno schemes with adaptive mesh refinement for models of polydisperse sedimentation, Z. Angew. Math. Mech., (2012)
[36] Dumbser, M.; Zanotti, O.; Hidalgo, A.; Balsara, D. S., ADER-WENO finite volume schemes with space-time adaptive mesh refinement, J. Comput. Phys., 248, 257-286, (2013) · Zbl 1349.76325
[37] Dumbser, M.; Hidalgo, A.; Zanotti, O., High order space-time adaptive ADER-WENO finite volume schemes for non-conservative hyperbolic systems, Comput. Methods Appl. Mech. Engrg., 268, 359-387, (2014) · Zbl 1295.65088
[38] Grote, M. J.; Mitkova, T., High-order explicit local time-stepping methods for damped wave equations, J. Comput. Appl. Math., 239, 270-289, (2013) · Zbl 1255.65174
[39] Grote, M. J.; Mitkova, T., Explicit local time-stepping methods for maxwell’s equations, J. Comput. Appl. Math., 234, 3283-3302, (2010) · Zbl 1210.78026
[40] Dumbser, M.; Uuriintsetseg, A.; Zanotti, O., On arbitrary-Lagrangian-Eulerian one-step WENO schemes for stiff hyperbolic balance laws, Commun. Comput. Phys., 14, 301-327, (2013) · Zbl 1373.76126
[41] Rusanov, V. V., Calculation of interaction of non-steady shock waves with obstacles, J. Comput. Math. Phys. USSR, 1, 267-279, (1961)
[42] Dumbser, M.; Toro, E. F., On universal osher-type schemes for general nonlinear hyperbolic conservation laws, Commun. Comput. Phys., 10, 635-671, (2011) · Zbl 1373.76125
[43] Dumbser, M.; Toro, E. F., A simple extension of the osher Riemann solver to non-conservative hyperbolic systems, J. Sci. Comput., 48, 70-88, (2011) · Zbl 1220.65110
[44] Jiang, G. S.; Shu, C. W., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 202-228, (1996) · Zbl 0877.65065
[45] Titarev, V. A.; Toro, E. F., ADER: arbitrary high order Godunov approach, J. Sci. Comput., 17, 609-618, (2002) · Zbl 1024.76028
[46] Titarev, V. A.; Toro, E. F., ADER schemes for three-dimensional nonlinear hyperbolic systems, J. Comput. Phys., 204, 715-736, (2005) · Zbl 1060.65641
[47] Dumbser, M.; Enaux, C.; Toro, E. F., Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws, J. Comput. Phys., 227, 3971-4001, (2008) · Zbl 1142.65070
[48] Dumbser, M.; Zanotti, O., Very high order PNPM schemes on unstructured meshes for the resistive relativistic MHD equations, J. Comput. Phys., 228, 6991-7006, (2009) · Zbl 1261.76028
[49] Hidalgo, A.; Dumbser, M., ADER schemes for nonlinear systems of stiff advection diffusion reaction equations, J. Sci. Comput., 48, 173-189, (2011) · Zbl 1221.65231
[50] Stroud, A. H., Approximate calculation of multiple integrals, (1971), Prentice-Hall Inc Englewood Cliffs, New Jersey · Zbl 0379.65013
[51] Dumbser, M., Arbitrary high order PNPM schemes on unstructured meshes for the compressible Navier-Stokes equations, Comput. & Fluids, 39, 60-76, (2010) · Zbl 1242.76161
[52] Dumbser, M.; Käser, M., Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems, J. Comput. Phys., 221, 693-723, (2007) · Zbl 1110.65077
[53] Dumbser, M.; Käser, M.; Titarev, V. A; Toro, E. F., Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems, J. Comput. Phys., 226, 204-243, (2007) · Zbl 1124.65074
[54] Toro, E. F., Riemann solvers and numerical methods for fluid dynamics, (1999), Springer · Zbl 0923.76004
[55] Dedner, A.; Kemm, F.; Kröner, D.; Munz, C.-D.; Schnitzer, T.; Wesenberg, M., Hyperbolic divergence cleaning for the MHD equations, J. Comput. Phys., 175, 645-673, (2002) · Zbl 1059.76040
[56] Roe, P. L.; Balsara, D. S., Notes on the eigensystem of magnetohydrodynamics, SIAM J. Appl. Math., 56, 57-67, (1996) · Zbl 0845.35092
[57] Falle, S. A.E. G., On the inadmissibility of non-evolutionary shocks, J. Plasma Phys., 65, 29-58, (2001)
[58] Torrilhon, M., Non-uniform convergence of finite volume schemes for Riemann problems of ideal magnetohydrodynamics, J. Comput. Phys., 192, 73-94, (2003) · Zbl 1032.76721
[59] Boscheri, W.; Dumbser, M., A direct arbitrary-Lagrangian-Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and non-conservative hyperbolic systems in 3D, J. Comput. Phys., 275, 484-523, (2014) · Zbl 1349.76310
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.