×

Non-intrusive reduced order modelling of the Navier-Stokes equations. (English) Zbl 1423.76287

Summary: This article presents two new non-intrusive reduced order models based upon proper orthogonal decomposition (POD) for solving the Navier-Stokes equations. The novelty of these methods resides in how the reduced order models are formed, that is, how the coefficients of the POD expansions are calculated. Rather than taking a standard approach of projecting the underlying equations onto the reduced space through a Galerkin projection, here two different techniques are employed. The first method applies a second order Taylor series to calculate the POD coefficients at each time step from the POD coefficients at earlier time steps. The second method uses a Smolyak sparse grid collocation method to calculate the POD coefficients, where again the coefficients at earlier time steps are used as the inputs. The advantage of both approaches are that they are non-intrusive and so do not require modifications to a system code; they are therefore very easy to implement. They also provide accurate solutions for modelling flow problems, and this has been demonstrated by the simulation of flows past a cylinder and within a gyre. It is demonstrated that accuracy relative to the high fidelity model is maintained whilst CPU times are reduced by several orders of magnitude in comparison to high fidelity models.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
35Q30 Navier-Stokes equations

Software:

nwSpGr
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Pearson, K., On lines and planes of closest fit to systems of points in space, Phil. Mag., 2, 559-572 (1901) · JFM 32.0710.04
[2] Fukunaga, K., Introduction to statistical recognition, (Computer Science and Scientific Computing Series (1990), Academic Press: Academic Press Boston, MA), 5-33
[3] Crommelin, D. T.; Majda, A. J., Strategies for model reduction: Comparing different optimal bases, J. Atmospheric Sci., 61, 2206-2217 (2004)
[4] Jolliffe, I. T., Principal Component Analysis, 559-572 (2002), Springer · Zbl 1011.62064
[5] Cao, Y.; Zhu, J.; Navon, I. M.; Luo, Z., A reduced order approach to four dimensional variational data assimilation using proper orthogonal decomposition, Internat. J. Numer. Methods Fluids, 53, 1571-1583 (2007) · Zbl 1370.86002
[6] Vermeulen, P. T.M.; Heemink, A. W., Model-reduced variational data assimilation, Mon. Weather Rev., 134, 2888-2899 (2006)
[7] Daescu, D. N.; Navon, I. M., A dual-weighted approach to order reduction in 4d-var data assimilation, Mon. Weather Rev., 136, 3, 1026-1041 (2008)
[8] Stefanescu, R.; Navon, I. M., POD/DEIM nonlinear model order reduction of an adi implicit shallow water equations model, J. Comput. Phys., 237, 95-114 (2013) · Zbl 1286.76106
[9] Stefanescu, R.; Sandu, A.; Navon, I. M., Comparison of POD reduced order strategies for the nonlinear 2D shallow water equations, Int. J. Numer. Methods Fluids, 76, 497-521 (2014)
[10] Chen, X.; Navon, I. M.; Fang, F., A dual-weighted trust-region adaptive pod 4d-var applied to a finite-element shallow-water equations model, Internat. J. Numer. Methods Fluids, 65, 5, 520-541 (2011) · Zbl 1428.76145
[11] Chen, X.; Akella, S.; Navon, I. M., A dual-weighted trust-region adaptive pod 4-d var applied to a finite-volume shallow water equations model on the sphere, Internat. J. Numer. Methods Fluids, 68, 3, 377-402 (2012) · Zbl 1426.76347
[12] Altaf, M. U., Model reduced variational data assimilation for shallow water flow models (2011), Delft University of Technology, (Ph.D. thesis)
[13] Du, J.; Fang, F.; Pain, C. C.; Navon, I. M.; Zhu, J.; Ham, D. A., POD reduced-order unstructured mesh modeling applied to 2D and 3D fluid flow, Comput. Math. Appl., 65, 362-379 (2013) · Zbl 1319.76026
[14] Fang, F.; Pain, C.; Navon, I. M.; Elsheikh, A. H.; Du, J.; Xiao, D., Non-linear Petrov-Galerkin methods for reduced order hyperbolic equations and discontinuous finite element methods, J. Comput. Phys., 234, 540-559 (2013) · Zbl 1284.65132
[15] Xiao, D.; Fang, F.; Du, J.; Pain, C. C.; Navon, I. M.; Buchan, A. G.; ElSheikh, A. H.; Hu, G., Non-linear Petrov-Galerkin methods for reduced order modelling of the navier-stokes equations using a mixed finite element pair, Comput. Methods Appl. Mech. Eng., 255, 147-157 (2013) · Zbl 1297.76107
[16] Xiao, D.; Fang, F.; Buchan, A. G.; Pain, C. C.; Navon*, I. M.; Du, J.; Hu, G., Non-linear model reduction for the Navier-Stokes equations using residual deim method, J. Comput. Phys., 263, 1-18 (2014) · Zbl 1349.76288
[17] Chen, H., Blackbox stencil interpolation method for model reduction (2012), Massachusetts Institute of Technology, (Master’s thesis)
[18] Noack, B. R.; Morzynski, M.; Tadmor, G., Reduced-Order Modelling for Flow Control, vol. 528 (2011), Springer
[19] Noori, R.; Karbassi, A. R.; Ashrafi, Kh.; Ardestani, M.; Mehrdadi, N., Development and application of reduced-order neural network model based on proper orthogonal decomposition for bod5 monitoring: Active and online prediction, Environ. Prog. Sustainable Energy, 32, 1, 120-127 (2013)
[20] Audouze, C.; Vuyst, F. D.; Nair, P. B., Nonintrusive reduced-order modeling of parametrized time-dependent partial differential equations, Numer. Methods Partial Differential Equations, 29, 5, 1587-1628 (2013) · Zbl 1274.65270
[21] Iuliano, E.; Quagliarella, D., Aerodynamic shape optimization via non-intrusive pod-based surrogate modelling, (2013 IEEE Congress on Evolutionary Computation Cancún, México (2013)), 1-8
[22] Guénot, M.; Lepot, I.; Sainvitu, C.; Goblet, J.; Coelho, R. F., Adaptive sampling strategies for non-intrusive POD-based surrogates, Eng. Comput., 30, 4, 521-547 (2013)
[23] Casenave, F.; Ern, A.; Lelièvre, T., A nonintrusive reduced basis method applied to aeroacoustic simulations, Adv. Comput. Math., 1-26 (2014)
[24] Klie, H., Unlocking fast reservoir predictions via non-intrusive reduced order models, (The SPE Reservoir Simulation Symposium held in The Woodland, Texas, USA (2013)), 1-16
[25] Smolyak, S. A., Quadrature and interpolation formulas for tensor products of certain classes of functions, (Dokl. Akad. Nauk SSSR, vol. 4 (1963)), 123 · Zbl 0202.39901
[26] Garcke, J.; Griebel, M., Sparse Grids and Applications (2013), Springer
[27] Pflüger, D.; Peherstorfer, B.; Bungartz, H. J., Spatially adaptive sparse grids for high-dimensional data-driven problems, J. Complexity, 26, 5, 508-522 (2010) · Zbl 1200.65100
[28] Burkardt, J., The sparse grid interpolant, (Presentation at Department of Scientific Computing, Florida State University (2012)), 1-5
[29] Gerstner, T.; Griebel, M., Numerical integration using sparse grids, Numer. Algorithms, 18, 3-4, 209-232 (1998) · Zbl 0921.65022
[30] Nobile, F.; Tempone, R.; Webster, C. G., A sparse grid stochastic collocation method for partial differential equations with random input data, SIAM J. Numer. Anal., 46, 5, 2309-2345 (2008) · Zbl 1176.65137
[31] Judd, K. L.; Maliar, L.; Maliar, S.; Valero, R., Smolyak method for solving dynamic economic models: Lagrange interpolation, anisotropic grid and adaptive domain, J. Econ. Dyn. Control, 44, 92-123 (2014) · Zbl 1402.91368
[32] Heiss, F.; Winschel, V., Likelihood approximation by numerical integration on sparse grids, J. Econometrics, 144, 1, 62-80 (2008) · Zbl 1418.62466
[33] Ganapathysubramanian, B, N.; Zabaras, Sparse grid collocation schemes for stochastic natural convection problems, J. Comput. Phys., 225, 1, 652-685 (2007) · Zbl 1343.76059
[34] Buzzard, G. T.; Xiu, D., Variance-based global sensitivity analysis via sparse-grid interpolation and cubature, Commun. Comput. Phys., 9, 3, 542-567 (2011) · Zbl 1364.41003
[36] Barthelmann, V.; Novak, E.; Ritter, K., High dimensional polynomial interpolation on sparse grids, Adv. Comput. Math., 12, 4, 273-288 (2000) · Zbl 0944.41001
[37] Peherstorfer, B., Model order reduction of parametrized systems with sparse grid learning techniques (Dissertation) (2013), Technische Universitat Munchen: Technische Universitat Munchen Munchen
[38] Cheng, M., Adaptive methods exploring intrinsic sparse structures of stochastic partial differential equations (2013), California Institute of Technology, (Ph.D. thesis)
[39] Ullmann, S.; Lang, J., POD-Galerkin modeling and sparse-grid collocation for a natural convection problem with stochastic boundary conditions, (Sparse Grids and Applications-Munich 2012 (2014), Springer), 295-315 · Zbl 1329.76192
[40] Sumant, P. S.; Wu, H.; Cangellaris, A. C.; Aluru, N. R., A sparse grid based collocation method for model order reduction of finite element approximations of passive electromagnetic devices under uncertainty, (Microwave Symposium Digest (MTT), 2010 IEEE MTT-S International (2010), IEEE), 1652-1655
[41] Pain, C. C.; Piggott, M. D.; Goddard, A. J.H., Three-dimensional unstructured mesh ocean modelling, Ocean Model., 10, 5-33 (2005)
[42] Sirovich, L., Turbulence and the dynamics of coherent structures, part III: Dynamics and scaling, Q. Appl. Math., XLV, 583-590 (1987) · Zbl 0676.76047
[43] Chaturantabut, S., Dimension reduction for unsteady nonlinear partial differential equations via empirical interpolation methods (2008), Rice university, (Master’s thesis)
[44] Burkardt, J., Sparse grid collocation for uncertainty quantification, (Presentation at Department of Scientific, Computing Florida State University (2014)), 1-64
[45] Conrard, P. R.; Marzouk, Y. M., Adaptive Smolyak pseudospectral approximations, SIAM J. Sci. Comput., 35, 6, 2643-2670 (2013)
[46] Eldred, M. S.; Burkardt, J., Comparison of Non-intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Quantification, 1-20 (2009), American Institute of Aeronautics and Astronautics, 2009-0976
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.