×

zbMATH — the first resource for mathematics

A performance study of NURBS-based isogeometric analysis for interior two-dimensional time-harmonic acoustics. (English) Zbl 1423.76221
Summary: This work evaluates the performance of a NURBS-based isogeometric finite element formulation for solving stationary acoustic problems in two dimensions. An initial assessment is made by studying eigenvalue problems for a square and a circular domain. The spectral approximation properties of NURBS functions of varying order are compared to those of conventional polynomials and are found to be superior, yielding more accurate representations of eigenvalues as well as eigenmodes. The higher smoothness of NURBS shape functions yields better approximations over an extended frequency range when compared to conventional polynomials. Two numerical case studies, including a geometrically complex domain, are used to benchmark the method versus the traditional finite element method. A convergence analysis confirms the higher efficiency of the isogeometric method on a per-degree-of-freedom basis. Simulations over a wider frequency range also illustrate that the method suffers less from the dispersion effects that deteriorate the acoustic response towards higher frequencies. The tensor product structure of NURBS, however, also imposes practical considerations when modelling a complex geometry consisting of multiple patches.

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65D17 Computer-aided design (modeling of curves and surfaces)
76Q05 Hydro- and aero-acoustics
Software:
COMSOL; ISOGAT; GeoPDEs
PDF BibTeX Cite
Full Text: DOI
References:
[1] Zienkiewicz, O.; Taylor, R., The finite element method—the three volume set, (2005), Butterworth-Heinemann
[2] Thompson, L., A review of finite-element methods for time-harmonic acoustics, J. Acoust. Soc. Am., 119, 1315-1330, (2006)
[3] Banerjee, P.; Butterfield, R., Boundary element methods in engineering science, (1981), McGraw-Hill London · Zbl 0499.73070
[4] Wu, T., Boundary element acoustics, fundamentals and computer codes, (2000), WIT Press · Zbl 0987.76500
[5] Vorlander, M., Simulation of the transient and steady-state sound propagation in rooms using a new combined ray-tracing/image-source algorithm, J. Acoust. Soc. Am., 86, 172-178, (1989)
[6] Lyon, R.; DeJong, R., Theory and application of statistical energy analysis, (1994), Butterworth-Heinemann
[7] P. Frey, P. George, Mesh Generation, ISTE, Wiley, 2010.
[8] Hughes, T.; Cottrell, J.; Bazilevs, Y., Isogeometric analysis: CAD, finite elemens, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 4135-4195, (2005) · Zbl 1151.74419
[9] Wall, W.; Frenzel, M.; Cyron, C., Isogeometric structural shape optimization, Comput. Methods Appl. Mech. Engrg., 197, 2976-2988, (2008) · Zbl 1194.74263
[10] Fußeder, D.; Simeon, B.; Vuong, A.-V., Fundamental aspects of shape optimization in the context of isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 286, 313-331, (2015) · Zbl 1425.65159
[11] Scott, M.; Simpson, R.; Evans, J.; Bordas, S.; Hughes, T.; Sederberg, T., Isogeometric boundary element analysis using unstructured \(T\)-splines, Comput. Methods Appl. Mech. Engrg., 254, 197-221, (2013) · Zbl 1297.74156
[12] Simpson, R.; Scott, M.; Taus, M.; Thomas, D.; Lian, H., Acoustic isogeometric boundary element analysis, Comput. Methods Appl. Mech. Engrg., 269, 265-290, (2014) · Zbl 1296.65175
[13] Lian, H.; Simpson, R.; Bordas, S., Stress analysis without meshing: isogeometric boundary element method, Proc. Inst. Civ. Eng. Eng. Comput. Mech., 166, 88-99, (2013)
[14] Coox, L.; Atak, O.; Vandepitte, D.; Desmet, W., An isogeometric indirect boundary element method for solving acoustic problems in open-boundary domains, Comput. Methods Appl. Mech. Engrg., (2016), submitted for publication
[15] Kostas, K.; Ginnis, A.; Politis, C.; Kaklis, P., Ship-hull shape optimization with a \(T\)-spline based BEM-isogeometric solver, Comput. Methods Appl. Mech. Engrg., 284, 611-622, (2015) · Zbl 1425.65201
[16] Ihlenburg, F.; Babuška, I., Finite element solution of the Helmholtz equation with high wave number part II: the h-p-version of the FEM, SIAM J. Numer. Anal., 34, 315-358, (1997) · Zbl 0884.65104
[17] Deraemaeker, A.; Babuška, I.; Bouillard, P., Dispersion and pollution of the FEM solution for the Helmholtz equation in one, two and three dimensions, Internat. J. Numer. Methods Engrg., 46, 471-499, (1999) · Zbl 0957.65098
[18] Bouillard, P.; Ihlenburg, F., Error estimation and adaptivity for the finite element method in acoustics: 2D and 3D applications, Comput. Methods Appl. Mech. Engrg., 176, 147-163, (1999) · Zbl 0954.76040
[19] Strouboulis, T.; Copps, K.; Babuška, I., The generalized finite element method, Comput. Methods Appl. Mech. Engrg., 190, 4081-4193, (2001) · Zbl 0997.74069
[20] Deckers, E.; Atak, O.; Coox, L.; D’Amico, R.; Devriendt, H.; Koo, J. S.K.; Pluymers, B.; Vandepitte, D.; Desmet, W., The wave based method: an overview of 15 years of research, Wave Motion, 51, 550-565, (2014) · Zbl 1456.35006
[21] Rouch, P.; Ladevèze, P., The variational theory of complex rays: a predictive tool for medium-frequency vibrations, Comput. Methods Appl. Mech. Engrg., 192, 3301-3315, (2003) · Zbl 1054.74602
[22] Cottrell, J.; Hughes, T.; Bazilevs, Y., Isogeometric analysis: toward integration of CAD and FEA, (2009), John Wiley & Sons · Zbl 1378.65009
[23] Bazilevs, Y.; Beirão da Veiga, L.; Cottrell, J.; Hughes, T.; Sangalli, G., Isogeometric analysis: approximation, stability and error estimates for h-refined meshes, Math. Models Methods Appl. Sci., 16, 1031-1090, (2006) · Zbl 1103.65113
[24] Evans, J.; Bazilevs, Y.; Babuška, I.; Hughes, T., N-widths, sup-infs, and optimality ratios for the k-version of the isogeometric finite element method, Comput. Methods Appl. Mech. Engrg., 198, 1726-1741, (2009) · Zbl 1227.65093
[25] Hughes, T.; Evans, J.; Reali, A., Finite element and NURBS approximations of eigenvalue, boundary-value and initial-value problems, Comput. Methods Appl. Mech. Engrg., 272, 290-320, (2014) · Zbl 1296.65148
[26] Nguyen, V. P.; Anitescu, C.; Bordas, S. P.; Rabczuk, T., Isogeometric analysis: an overview and computer implementation aspects, Math. Comput. Simulation, 117, 89-116, (2015)
[27] L. Coox, O. Atak, D. Vandepitte, W. Desmet, An isogeometric indirect boundary element method for Helmholtz problems, in: Proceedings of the 26th Conference on Noise and Vibration Engineering, ISMA2014, 2014, pp. 4189-4201.
[28] Hughes, T.; Reali, A.; Sangalli, G., Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: comparison of p-method finite elements with k-method NURBS, Comput. Methods Appl. Mech. Engrg., 197, 49-50, 4104-4124, (2008) · Zbl 1194.74114
[29] Cottrell, J.; Reali, A.; Bazilevs, Y.; Hughes, T., Isogeometric analysis of structural vibrations, Comput. Methods Appl. Mech. Engrg., 195, 5257-5296, (2006) · Zbl 1119.74024
[30] Morse, P.; Ingard, K., Theoretical acoustics, (1968), Princeton University Press
[31] Piegl, L.; Tiller, W., The NURBS book, (1997), Springer-Verlag Berlin, Heidelberg · Zbl 0868.68106
[32] M. Cox, The numerical evaluation of \(B\)-splines, DNAC 4, National Physics Laboratory, 1971.
[33] de Boor, C., On calculation with \(B\)-splines, J. Approx. Theory, 6, 50-62, (1972) · Zbl 0239.41006
[34] Cottrell, J.; Hughes, T.; Reali, A., Studies of refinement and continuity in isogeometric structural analysis, Comput. Methods Appl. Mech. Engrg., 196, 4160-4183, (2007) · Zbl 1173.74407
[35] Kleiss, S. K.; Jüttler, B.; Zulehner, W., Enhancing isogeometric analysis by a finite element-based local refinement strategy, Comput. Methods Appl. Mech. Engrg., 213-216, 168-182, (2012) · Zbl 1243.65139
[36] Vuong, A.; Giannelli, C.; Jüttler, B.; Simeon, B., A hierarchical approach to adaptive local refinement in isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 200, 3354-3567, (2011) · Zbl 1239.65013
[37] Schillinger, D.; Rank, E., An unfitted hp-adaptive finite element method based on hierarchical \(B\)-splines for interface problems of complex geometry, Comput. Methods Appl. Mech. Engrg., 200, 3358-3380, (2011) · Zbl 1230.74197
[38] Sederberg, T.; Zhen, J.; Bakenov, A.; Nasri, A., \(T\)-splines and T-nurccs, ACM Trans. Graph., 22, 3, 477-484, (2003)
[39] Bazilevs, Y.; Calo, V.; Cottrell, J.; Evans, J.; Hughes, T.; Scott, L. S.M.; Sederberg, T., Isogeometric analysis using \(T\)-splines, Comput. Methods Appl. Mech. Engrg., 199, 229-263, (2010) · Zbl 1227.74123
[40] Scott, M.; Li, X.; Sederberg, T.; Hughes, T., Local refinement of analysis-suitable \(T\)-splines, Comput. Methods Appl. Mech. Engrg., 213, 206-222, (2012) · Zbl 1243.65030
[41] Marussig, B.; Zechner, J.; Beer, G.; Fries, T.-P., Fast isogeometric boundary element method based on independent field approximation, Comput. Methods Appl. Mech. Engrg., 284, 458-488, (2015) · Zbl 1423.74101
[42] G. Xu, E. Atroshchenko, S. Bordas, Geometry-Independent Field approximaTion: CAD-Analysis Integration, geometrical exactness and adaptivity, in: Proceedings of the 11th World Congress in Computational Mechanics, 2014.
[43] de Falco, C.; Reali, A.; Vázquez, R., Geopdes: a research tool for isogeometric analysis of pdes, Adv. Eng. Softw., 42, 1020-1034, (2011), URL http://geopdes.sourceforge.net/ · Zbl 1246.35010
[44] COMSOL Multiphysics. URL http://www.comsol.com/comsol-multiphysics.
[45] Brown, J. W.; Churchill, R. V., Fourier series and boundary value problems, (1993), McGraw-Hill
[46] Ihlenburg, F.; Babuška, I., Finite element solution of the Helmholtz equation with high wave number part I: the h-version of the FEM, Comput. Math. Appl., 30, 9-37, (1995) · Zbl 0838.65108
[47] Heylen, W.; Lammens, S.; Sas, P., Modal analysis theory and testing, (2007), Katholieke Universiteit Leuven-Departement Werktuigkunde
[48] Esterhazy, S.; Melenk, J., An analysis of discretizations of the Helmholtz equation in \(L^2\) and in negative norms, Comput. Math. Appl., 67, 830-853, (2014) · Zbl 1350.65123
[49] Schillinger, D.; Dedè, L.; Scott, M. A.; Evans, J. A.; Borden, M. J.; Rank, E.; Hughes, T. J., An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and \(T\)-spline CAD surfaces, Comput. Methods Appl. Mech. Engrg., 249-252, 116-150, (2012) · Zbl 1348.65055
[50] Sevilla, R.; Huerta, F.-M. S., A., NURBS-enhanced finite element method (NEFEM), Internat. J. Numer. Methods Engrg., 76, 56-83, (2011) · Zbl 1162.65389
[51] Rosolen, A.; Arroyo, M., Blending isogeometric analysis and local maximum entropy meshfree approximants, Comput. Methods Appl. Mech. Engrg., 264, 95-107, (2013) · Zbl 1286.65025
[52] Greco, F.; Coox, L.; Desmet, W., Maximum-entropy methods for time-harmonic acoustics, Comput. Methods Appl. Mech. Engrg., (2016), submitted for publication
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.