×

zbMATH — the first resource for mathematics

Improved robustness for nearly-incompressible large deformation meshfree simulations on Delaunay tessellations. (English) Zbl 1423.74962
Summary: A displacement-based Galerkin meshfree method for large deformation analysis of nearly-incompressible elastic solids is presented. Nodal discretization of the domain is defined by a Delaunay tessellation (three-node triangles and four-node tetrahedra), which is used to form the meshfree basis functions and to numerically integrate the weak form integrals. In the proposed approach for nearly-incompressible solids, a volume-averaged nodal projection operator is constructed to average the dilatational constraint at a node from the displacement field of surrounding nodes. The nodal dilatational constraint is then projected onto the linear approximation space. The displacement field is constructed on the linear space and enriched with bubble-like meshfree basis functions for stability. The new procedure leads to a displacement-based formulation that is similar to \(F\)-bar methodologies in finite elements and isogeometric analysis. We adopt maximum-entropy meshfree basis functions, and the performance of the meshfree method is demonstrated on benchmark problems using structured and unstructured background meshes in two and three dimensions. The nonlinear simulations reveal that the proposed methodology provides improved robustness for nearly-incompressible large deformation analysis on Delaunay meshes.

MSC:
74S30 Other numerical methods in solid mechanics (MSC2010)
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
74B20 Nonlinear elasticity
Software:
GiD
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Arnold, D. N.; Brezzi, F.; Fortin, M., A stable finite element for the Stokes equations, Calcolo, 21, 4, 337-344, (1984) · Zbl 0593.76039
[2] Babuška, I., The finite element method with Lagrangian multipliers, Numer. Math., 20, 3, 179-192, (1973) · Zbl 0258.65108
[3] Brezzi, F., On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, RAIRO, Anal. Numér., 8, 129-151, (1974) · Zbl 0338.90047
[4] Ladyzhenskaya, O. A., The mathematical theory of viscous incompressible flows, (1969), Gordon and Breach London · Zbl 0184.52603
[5] Auricchio, F.; Beirao da Veiga, L.; Lovadina, C.; Reali, A., The importance of the exact satisfaction of the incompressibility constraint in nonlinear elasticity: mixed FEMs versus NURBS-based approximations, Comput. Methods Appl. Mech. Engrg., 199, 5-8, 314-323, (2010) · Zbl 1227.74061
[6] Auricchio, F.; Beirao da Veiga, L.; Lovadina, C.; Reali, A., An analysis of some mixed-enhanced finite element for plane linear elasticity, Comput. Methods Appl. Mech. Engrg., 194, 27-29, 2947-2968, (2005) · Zbl 1091.74046
[7] Lovadina, C.; Auricchio, F., On the enhanced strain technique for elasticity problems, Comput. Struct., 81, 8-11, 777-787, (2003)
[8] Taylor, R. L., A mixed-enhanced formulation for tetrahedral finite elements, Internat. J. Numer. Methods Engrg., 47, 1-3, 205-227, (2000) · Zbl 0985.74074
[9] Oñate, E.; Rojek, J.; Taylor, R. L.; Zienkiewicz, O. C., Finite calculus formulation for incompressible solids using linear triangles and tetrahedra, Internat. J. Numer. Methods Engrg., 59, 11, 1473-1500, (2004) · Zbl 1041.74546
[10] Cervera, M.; Chiumenti, M.; Valverde, Q.; Agelet de Saracibar, C., Mixed linear/linear simplicial elements for incompressible elasticity and plasticity, Comput. Methods Appl. Mech. Engrg., 192, 49-50, 5249-5263, (2003) · Zbl 1054.74050
[11] Zienkiewicz, O. C.; Rojek, J.; Taylor, R. L.; Pastor, M., Triangles and tetrahedra in explicit dynamic codes for solids, Internat. J. Numer. Methods Engrg., 43, 3, 565-583, (1998) · Zbl 0939.74073
[12] de Souza Neto, E. A.; Pires, F. M.A.; Owen, D. R.J., F-bar-based linear triangles and tetrahedra for finite strain analysis of nearly incompressible solids. part I: formulation and benchmarking, Internat. J. Numer. Methods Engrg., 62, 3, 353-383, (2005) · Zbl 1179.74159
[13] Thoutireddy, P.; Molinari, J. F.; Repetto, E. A.; Ortiz, M., Tetrahedral composite finite elements, Internat. J. Numer. Methods Engrg., 53, 6, 1337-1351, (2002) · Zbl 1112.74544
[14] Guo, Y.; Ortiz, M.; Belytschko, T.; Repetto, E. A., Triangular composite finite elements, Internat. J. Numer. Methods Engrg., 47, 1-3, 287-316, (2000) · Zbl 0985.74068
[15] Bonet, J.; Burton, A. J., A simple average nodal pressure tetrahedral element for incompressible and nearly incompressible dynamic explicit applications, Commun. Numer. Methods Engrg., 14, 5, 437-449, (1998) · Zbl 0906.73060
[16] Dohrmann, C. R.; Heinstein, M. W.; Jung, J.; Key, S. W.; Witkowski, W. R., Node-based uniform strain elements for three-node triangular and four-node tetrahedral meshes, Internat. J. Numer. Methods Engrg., 47, 9, 1549-1568, (2000) · Zbl 0989.74067
[17] Bonet, J.; Marriot, M.; Hassan, O., An averaged nodal deformation gradient linear tetrahedral element for large strain explicit dynamic applications, Commun. Numer. Methods Engrg., 17, 8, 551-561, (2001) · Zbl 1154.74307
[18] Puso, M. A.; Solberg, J., A stabilized nodally integrated tetrahedral, Internat. J. Numer. Methods Engrg., 67, 6, 841-867, (2006) · Zbl 1113.74075
[19] Krysl, P.; Zhu, B., Locking-free continuum displacement finite elements with nodal integration, Internat. J. Numer. Methods Engrg., 76, 7, 1020-1043, (2008) · Zbl 1195.74182
[20] Broccardo, M.; Micheloni, M.; Krysl, P., Assumed-deformation gradient finite elements with nodal integration for nearly incompressible large deformation analysis, Internat. J. Numer. Methods Engrg., 78, 9, 1113-1134, (2009) · Zbl 1183.74262
[21] Chen, J. S.; Yoon, S.; Wu, C. T., Non-linear version of stabilized conforming nodal integration for Galerkin mesh-free methods, Internat. J. Numer. Methods Engrg., 53, 12, 2587-2615, (2002) · Zbl 1098.74732
[22] Puso, M.; Zywicz, E.; Chen, J. S., A new stabilized nodal integration approach, (Meshfree Methods for Partial Differential Equations III, Lecture Notes in Computational Science and Engineering, vol. 57, (2007), Springer Berlin, Heidelberg), 207-217 · Zbl 1111.74048
[23] Puso, M. A.; Chen, J. S.; Zywicz, E.; Elmer, W., Meshfree and finite element nodal integration methods, Internat. J. Numer. Methods Engrg., 74, 3, 416-446, (2008) · Zbl 1159.74456
[24] Ortiz-Bernardin, A.; Hale, J. S.; Cyron, C. J., Volume-averaged nodal projection method for nearly-incompressible elasticity using meshfree and bubble basis functions, Comput. Methods Appl. Mech. Engrg., 285, 427-451, (2015) · Zbl 1423.74911
[25] Ortiz, A.; Puso, M. A.; Sukumar, N., Maximum-entropy meshfree method for compressible and near-incompressible elasticity, Comput. Methods Appl. Mech. Engrg., 199, 25-28, 1859-1871, (2010) · Zbl 1231.74491
[26] de Souza Neto, E. A.; Andrade Pires, F. M.; Owen, D. R.J., F-bar-based linear triangles and tetrahedra for finite strain analysis of nearly incompressible solids. part I: formulation and benchmarking, Internat. J. Numer. Methods Engrg., 62, 3, 353-383, (2005) · Zbl 1179.74159
[27] Elguedj, T.; Bazilevs, Y.; Calo, V.; Hughes, T. J.R., \(\overline{B}\)-bar and \(\overline{F}\)-bar projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements, Comput. Methods Appl. Mech. Engrg., 1, 33-40, 2667-3172, (2008)
[28] Wu, C. T.; Hu, W., Meshfree-enriched simplex elements with strain smoothing for the finite element analysis of compressible and nearly incompressible solids, Comput. Methods Appl. Mech. Engrg., 200, 45-46, 2991-3010, (2011) · Zbl 1230.74201
[29] Hu, W.; Wu, C. T.; Koishi, M., A displacement-based nonlinear finite element formulation using meshfree-enriched triangular elements for the two-dimensional large deformation analysis of elastomers, Finite Elem. Anal. Des., 50, 0, 161-172, (2012)
[30] Wu, C. T.; Koishi, M., Three-dimensional meshfree-enriched finite element formulation for micromechanical hyperelastic modeling of particulate rubber composites, Internat. J. Numer. Methods Engrg., 91, 11, 1137-1157, (2012)
[31] Chen, J. S.; Wu, C. T.; Yoon, S.; You, Y., A stabilized conforming nodal integration for Galerkin mesh-free methods, Internat. J. Numer. Methods Engrg., 50, 2, 435-466, (2001) · Zbl 1011.74081
[32] Dolbow, J.; Belytschko, T., Numerical integration of Galerkin weak form in meshfree methods, Comput. Mech., 23, 3, 219-230, (1999) · Zbl 0963.74076
[33] Griebel, M.; Schweitzer, M. A., A particle-partition of unity method. part II: efficient cover construction and reliable integration, SIAM J. Sci. Comput., 23, 5, 1655-1682, (2002) · Zbl 1011.65069
[34] De, S.; Bathe, K. J., The method of finite spheres with improved numerical integration, Comput. Struct., 79, 22-25, 2183-2196, (2001)
[35] Babuška, I.; Banerjee, U.; Osborn, J. E.; Li, Q. L., Quadrature for meshless methods, Internat. J. Numer. Methods Engrg., 76, 9, 1434-1470, (2008) · Zbl 1195.65165
[36] Babuška, I.; Banerjee, U.; Osborn, J. E.; Zhang, Q., Effect of numerical integration on meshless methods, Comput. Methods Appl. Mech. Engrg., 198, 37-40, 2886-2897, (2009) · Zbl 1229.65204
[37] Ortiz, A.; Puso, M.; Sukumar, N., Maximum-entropy meshfree method for incompressible media problems, Finite Elem. Anal. Des., 47, 6, 572-585, (2011)
[38] Duan, Q.; Li, X.; Zhang, H.; Belytschko, T., Second-order accurate derivatives and integration schemes for meshfree methods, Internat. J. Numer. Methods Engrg., 92, 4, 399-424, (2012) · Zbl 1352.65390
[39] Chen, J.-S.; Hillman, M.; Rüter, M., An arbitrary order variationally consistent integration for Galerkin meshfree methods, Internat. J. Numer. Methods Engrg., 95, 5, 387-418, (2013) · Zbl 1352.65481
[40] Duan, Q.; Gao, X.; Wang, B.; Li, X.; Zhang, H.; Belytschko, T.; Shao, Y., Consistent element-free Galerkin method, Internat. J. Numer. Methods Engrg., 99, 2, 79-101, (2014) · Zbl 1352.65493
[41] Duan, Q.; Gao, X.; Wang, B.; Li, X.; Zhang, H., A four-point integration scheme with quadratic exactness for three-dimensional element-free Galerkin method based on variationally consistent formulation, Comput. Methods Appl. Mech. Engrg., 280, 0, 84-116, (2014) · Zbl 1423.74877
[42] Fries, T. P.; Matthies, H. G., Classification and overview of meshfree methods, tech. rep. informatikbericht-nr. 2003-03, (2004), Institute of Scientific Computing, Technical University Braunschweig Braunschweig, Germany
[43] Sukumar, N., Construction of polygonal interpolants: a maximum entropy approach, Internat. J. Numer. Methods Engrg., 61, 12, 2159-2181, (2004) · Zbl 1073.65505
[44] Arroyo, M.; Ortiz, M., Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods, Internat. J. Numer. Methods Engrg., 65, 13, 2167-2202, (2006) · Zbl 1146.74048
[45] Sukumar, N.; Wright, R. W., Overview and construction of meshfree basis functions: from moving least squares to entropy approximants, Internat. J. Numer. Methods Engrg., 70, 2, 181-205, (2007) · Zbl 1194.65149
[46] Greco, F.; Sukumar, N., Derivatives of maximum-entropy basis functions on the boundary: theory and computations, Internat. J. Numer. Methods Engrg., 94, 12, 1123-1149, (2013) · Zbl 1352.65207
[47] Bonet, J.; Wood, R. D., Nonlinear continuum mechanics for finite element analysis, (2008), Cambridge University Press UK · Zbl 1142.74002
[48] Hughes, T. J.R., The finite element method: linear static and dynamic finite element analysis, (2000), Dover Publications, Inc. Mineola, NY · Zbl 1191.74002
[49] Flory, R., Thermodynamic relations for highly elastic materials, Trans. Faraday Soc., 57, 829-838, (1969)
[50] de Souza Neto, E. A.; Perić, D.; Dutko, M.; Owen, D. R.J., Design of simple low order finite elements for large strain analysis of nearly incompressible solids, Int. J. Solids Struct., 33, 20-22, 3277-3296, (1996) · Zbl 0929.74102
[51] Artioli, E.; Castellazzi, G.; Krysl, P., Assumed strain nodally integrated hexahedral finite element formulation for elastoplastic applications, Internat. J. Numer. Methods Engrg., 99, 11, 844-866, (2014) · Zbl 1352.74317
[52] GiD v10.0.9, GiD: the personal pre and post processor, http://www.gidhome.com/, 2011.
[53] Hauret, P.; Kuhl, E.; Ortiz, M., Diamond elements: a finite element/discrete-mechanics approximation scheme with guaranteed optimal convergence in incompressible elasticity, Internat. J. Numer. Methods Engrg., 72, 3, 253-294, (2007) · Zbl 1194.74406
[54] Reese, S.; Wriggers, P., A stabilization technique to avoid hourglassing in finite elasticity, Internat. J. Numer. Methods Engrg., 48, 1, 79-109, (2000) · Zbl 0983.74070
[55] Reese, S.; Wriggers, P.; Reddy, B., A new locking-free brick element technique for large deformation problems in elasticity, Comput. Struct., 75, 3, 291-304, (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.