×

zbMATH — the first resource for mathematics

Volume-averaged nodal projection method for nearly-incompressible elasticity using meshfree and bubble basis functions. (English) Zbl 1423.74911
Summary: We present a displacement-based Galerkin meshfree method for the analysis of nearly-incompressible linear elastic solids, where low-order simplicial tessellations (i.e., 3-node triangular or 4-node tetrahedral meshes) are used as a background structure for numerical integration of the weak form integrals and to get the nodal information for the computation of the meshfree basis functions. In this approach, a volume-averaged nodal projection operator is constructed to project the dilatational strain into an approximation space of equal- or lower-order than the approximation space for the displacement field resulting in a locking-free method. The stability of the method is provided via bubble-like basis functions. Because the notion of an “element” or “cell” is not present in the computation of the meshfree basis functions such low-order tessellations can be used regardless of the order of the approximation spaces desired. First- and second-order meshfree basis functions are chosen as a particular case in the proposed method. Numerical examples are provided in two and three dimensions to demonstrate the robustness of the method, its ability to avoid volumetric locking in the nearly-incompressible regime, and its improved performance when compared to the MINI finite element scheme on the simplicial mesh.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74B05 Classical linear elasticity
74G15 Numerical approximation of solutions of equilibrium problems in solid mechanics
Software:
Matlab
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Simo, J. C.; Taylor, R. L.; Pister, K. S., Variational and projection methods for the volume constraint in finite deformation elasto-plasticity, Comput. Methods Appl. Mech. Engrg., 51, 1-3, 177-208 (1985) · Zbl 0554.73036
[2] Simo, J. C.; Armero, F., Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes, Internat. J. Numer. Methods Engrg., 33, 7, 1413-1449 (1992) · Zbl 0768.73082
[3] Sussman, T.; Bathe, K. J., A finite element formulation for nonlinear incompressible elastic and inelastic analysis, Comput. Struct., 26, 1-2, 357-409 (1987) · Zbl 0609.73073
[4] Hansbo, P.; Larson, M. G., Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche’s method, Comput. Methods Appl. Mech. Engrg., 191, 17-18, 1895-1908 (2002) · Zbl 1098.74693
[5] Wihler, T. P., Locking-free DGFEM for elasticity problems in polygons, IMA J. Numer. Anal., 24, 1, 45-75 (2004) · Zbl 1057.74046
[6] Liu, R.; Wheeler, M. F.; Dawson, C. N., A three-dimensional nodal-based implementation of a family of discontinuous Galerkin methods for elasticity problems, Comput. Struct., 87, 3-4, 141-150 (2009)
[7] Falk, R., Nonconforming finite element methods for the equations of linear elasticity, Math. Comp., 57, 196, 529-550 (1991) · Zbl 0747.73044
[8] Wang, L.-H.; Qi, H., A locking-free scheme of nonconforming rectangular finite element for the planar elasticity, J. Comput. Math., 22, 5, 641-650 (2004) · Zbl 1088.74046
[9] Chen, S.; Ren, G.; Mao, S., Second-order locking-free nonconforming elements for planar linear elasticity, J. Comput. Appl. Math., 233, 10, 2534-2548 (2010) · Zbl 1423.74093
[10] Hughes, T. J.R., Generalization of selective integration procedures to anisotropic and nonlinear media, Internat. J. Numer. Methods Engrg., 15, 9, 1413-1418 (1980) · Zbl 0437.73053
[11] Elguedj, T.; Bazilevs, Y.; Calo, V.; Hughes, T. J.R., \( \overline{B} \)-bar and \(\overline{F} \)-bar projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements, Comput. Methods Appl. Mech. Engrg., 1, 33-40, 2667-3172 (2008)
[12] Auricchio, F.; Beirão da Veiga, L.; Lovadina, C.; Reali, A., An analysis of some mixed-enhanced finite element for plane linear elasticity, Comput. Methods Appl. Mech. Engrg., 194, 27-29, 2947-2968 (2005) · Zbl 1091.74046
[13] Lovadina, C.; Auricchio, F., On the enhanced strain technique for elasticity problems, Comput. Struct., 81, 8-11, 777-787 (2003)
[14] Taylor, R. L., A mixed-enhanced formulation for tetrahedral finite elements, Internat. J. Numer. Methods Engrg., 47, 1-3, 205-227 (2000) · Zbl 0985.74074
[15] Oñate, E.; Rojek, J.; Taylor, R. L.; Zienkiewicz, O. C., Finite calculus formulation for incompressible solids using linear triangles and tetrahedra, Internat. J. Numer. Methods Engrg., 59, 11, 1473-1500 (2004) · Zbl 1041.74546
[16] Cervera, M.; Chiumenti, M.; Valverde, Q.; Agelet de Saracibar, C., Mixed linear/linear simplicial elements for incompressible elasticity and plasticity, Comput. Methods Appl. Mech. Engrg., 192, 49-50, 5249-5263 (2003) · Zbl 1054.74050
[17] Zienkiewicz, O. C.; Rojek, J.; Taylor, R. L.; Pastor, M., Triangles and tetrahedra in explicit dynamic codes for solids, Internat. J. Numer. Methods Engrg., 43, 3, 565-583 (1998) · Zbl 0939.74073
[18] de Souza Neto, E. A.; Pires, F. M.A.; Owen, D. R.J., F-bar-based linear triangles and tetrahedra for finite strain analysis of nearly incompressible solids. Part I: formulation and benchmarking, Internat. J. Numer. Methods Engrg., 62, 3, 353-383 (2005) · Zbl 1179.74159
[19] Thoutireddy, P.; Molinari, J. F.; Repetto, E. A.; Ortiz, M., Tetrahedral composite finite elements, Internat. J. Numer. Methods Engrg., 53, 6, 1337-1351 (2002) · Zbl 1112.74544
[20] Guo, Y.; Ortiz, M.; Belytschko, T.; Repetto, E. A., Triangular composite finite elements, Internat. J. Numer. Methods Engrg., 47, 1-3, 287-316 (2000) · Zbl 0985.74068
[21] Bonet, J.; Burton, A. J., A simple average nodal pressure tetrahedral element for incompressible and nearly incompressible dynamic explicit applications, Comm. Numer. Methods Engrg., 14, 5, 437-449 (1998) · Zbl 0906.73060
[22] Dohrmann, C. R.; Heinstein, M. W.; Jung, J.; Key, S. W.; Witkowski, W. R., Node-based uniform strain elements for three-node triangular and four-node tetrahedral meshes, Internat. J. Numer. Methods Engrg., 47, 9, 1549-1568 (2000) · Zbl 0989.74067
[23] Bonet, J.; Marriot, M.; Hassan, O., An averaged nodal deformation gradient linear tetrahedral element for large strain explicit dynamic applications, Comm. Numer. Methods Engrg., 17, 8, 551-561 (2001) · Zbl 1154.74307
[24] Puso, M. A.; Solberg, J., A stabilized nodally integrated tetrahedral, Internat. J. Numer. Methods Engrg., 67, 6, 841-867 (2006) · Zbl 1113.74075
[25] Broccardo, M.; Micheloni, M.; Krysl, P., Assumed-deformation gradient finite elements with nodal integration for nearly incompressible large deformation analysis, Internat. J. Numer. Methods Engrg., 78, 9, 1113-1134 (2009) · Zbl 1183.74262
[26] Ortiz, A.; Puso, M. A.; Sukumar, N., Maximum-entropy meshfree method for compressible and near-incompressible elasticity, Comput. Methods Appl. Mech. Engrg., 199, 25-28, 1859-1871 (2010) · Zbl 1231.74491
[27] Lamichhane, B. P., Inf-sup stable finite-element pairs based on dual meshes and bases for nearly incompressible elasticity, IMA J. Numer. Anal., 29, 2, 404-420 (2009) · Zbl 1160.74046
[28] Lamichhane, B. P., From the Hu-Washizu formulation to the average nodal strain formulation, Comput. Methods Appl. Mech. Engrg., 198, 49-52, 3957-3961 (2009) · Zbl 1231.74424
[29] Krysl, P.; Zhu, B., Locking-free continuum displacement finite elements with nodal integration, Internat. J. Numer. Methods Engrg., 76, 7, 1020-1043 (2008) · Zbl 1195.74182
[30] Castellazzi, G.; Krysl, P., Patch-averaged assumed strain finite elements for stress analysis, Internat. J. Numer. Methods Engrg., 90, 13, 1618-1635 (2012) · Zbl 1246.74056
[31] Simo, J. C.; Hughes, T. J.R., On the variational foundations of assumed strain methods, J. Appl. Mech., 53, 1, 51-54 (1986) · Zbl 0592.73019
[32] Nguyen-Xuan, H.; Liu, G. R., An edge-based smoothed finite element method softened with a bubble function (bES-FEM) for solid mechanics problems, Comput. Struct., 128, 0, 14-30 (2013)
[33] Brezzi, F., On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, RAIRO Anal. Numér., 8, 129-151 (1974) · Zbl 0338.90047
[34] Ladyzhenskaya, O. A., The Mathematical Theory of Viscous Incompressible Flows (1969), Gordon and Breach: Gordon and Breach London · Zbl 0184.52603
[35] Babuška, I., The finite element method with Lagrangian multipliers, Numer. Math., 20, 3, 179-192 (1973) · Zbl 0258.65108
[36] Dolbow, J.; Belytschko, T., Numerical integration of Galerkin weak form in meshfree methods, Comput. Mech., 23, 3, 219-230 (1999) · Zbl 0963.74076
[37] Babuška, I.; Banerjee, U.; Osborn, J. E.; Li, Q. L., Quadrature for meshless methods, Internat. J. Numer. Methods Engrg., 76, 9, 1434-1470 (2008) · Zbl 1195.65165
[38] Babuška, I.; Banerjee, U.; Osborn, J. E.; Zhang, Q., Effect of numerical integration on meshless methods, Comput. Methods Appl. Mech. Engrg., 198, 37-40, 2886-2897 (2009) · Zbl 1229.65204
[39] Chen, J. S.; Wu, C. T.; Yoon, S.; You, Y., A stabilized conforming nodal integration for Galerkin mesh-free methods, Internat. J. Numer. Methods Engrg., 50, 2, 435-466 (2001) · Zbl 1011.74081
[40] Ortiz, A.; Puso, M.; Sukumar, N., Maximum-entropy meshfree method for incompressible media problems, Finite Elem. Anal. Des., 47, 6, 572-585 (2011)
[41] Duan, Q.; Li, X.; Zhang, H.; Belytschko, T., Second-order accurate derivatives and integration schemes for meshfree methods, Internat. J. Numer. Methods Engrg., 92, 4, 399-424 (2012) · Zbl 1352.65390
[42] Chen, J.-S.; Hillman, M.; Rüter, M., An arbitrary order variationally consistent integration for Galerkin meshfree methods, Internat. J. Numer. Methods Engrg., 95, 5, 387-418 (2013) · Zbl 1352.65481
[43] Duan, Q.; Gao, X.; Wang, B.; Li, X.; Zhang, H.; Belytschko, T.; Shao, Y., Consistent element-free Galerkin method, Internat. J. Numer. Methods Engrg., 99, 2, 79-101 (2014) · Zbl 1352.65493
[44] Duan, Q.; Gao, X.; Wang, B.; Li, X.; Zhang, H., A four-point integration scheme with quadratic exactness for three-dimensional element-free Galerkin method based on variationally consistent formulation, Comput. Methods Appl. Mech. Engrg., 280, 0, 84-116 (2014) · Zbl 1423.74877
[45] Wu, C.; Hu, W., Meshfree-enriched simplex elements with strain smoothing for the finite element analysis of compressible and nearly incompressible solids, Comput. Methods Appl. Mech. Engrg., 200, 45-46, 2991-3010 (2011) · Zbl 1230.74201
[46] Arnold, D. N.; Brezzi, F.; Fortin, M., A stable finite element for the Stokes equations, Calcolo, 21, 4, 337-344 (1984) · Zbl 0593.76039
[47] Sukumar, N., Construction of polygonal interpolants: a maximum entropy approach, Internat. J. Numer. Methods Engrg., 61, 12, 2159-2181 (2004) · Zbl 1073.65505
[48] Arroyo, M.; Ortiz, M., Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods, Internat. J. Numer. Methods Engrg., 65, 13, 2167-2202 (2006) · Zbl 1146.74048
[49] Sukumar, N.; Wright, R. W., Overview and construction of meshfree basis functions: from moving least squares to entropy approximants, Internat. J. Numer. Methods Engrg., 70, 2, 181-205 (2007) · Zbl 1194.65149
[50] Cyron, C. J.; Arroyo, M.; Ortiz, M., Smooth, second order, non-negative meshfree approximants selected by maximum entropy, Internat. J. Numer. Methods Engrg., 79, 13, 1605-1632 (2009) · Zbl 1176.74208
[51] Wang, J. G.; Liu, G. R., A point interpolation meshless method based on radial basis functions, Internat. J. Numer. Methods Engrg., 54, 11, 1623-1648 (2002) · Zbl 1098.74741
[52] Liu, G. R., Meshfree Methods: Moving Beyond the Finite Element Method (2010), CRC Press: CRC Press Boca Raton, FL · Zbl 1205.74003
[53] Greco, F.; Sukumar, N., Derivatives of maximum-entropy basis functions on the boundary: theory and computations, Internat. J. Numer. Methods Engrg., 94, 12, 1123-1149 (2013) · Zbl 1352.65207
[54] Fasshauer, G. E., Meshfree Approximation Methods with MATLAB (2007), World Scientific Pub. Co. Inc. · Zbl 1123.65001
[55] Buhmann, M. D., A new class of radial basis functions with compact support, Math. Comp., 70, 233, 307-318 (2000) · Zbl 0956.41002
[56] Hughes, T. J.R., The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (2000), Dover Publications, Inc.: Dover Publications, Inc. Mineola, NY · Zbl 1191.74002
[57] Crouzeix, M.; Raviart, P.-A., Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I, Rev. Fr. Autom. Inform. Rech. Oper., R7, 3, 33-76 (1974) · Zbl 0302.65087
[58] Hood, P.; Taylor, C., Navier-Stokes equations using mixed interpolations, (Oden, J. T.; Zienkiewicz, O. C.; Gallagher, R. H.; Taylor, C., Finite Element Methods in Flow Problems (1974), UAH Press, The University of Alabama in Huntsville: UAH Press, The University of Alabama in Huntsville Huntsville, AL), 121-132
[59] Timoshenko, S. P.; Goodier, J. N., Theory of Elasticity (1970), McGraw-Hill: McGraw-Hill NY · Zbl 0266.73008
[60] Simo, J. C.; Rifai, S., A class of mixed assumed strain methods and the method of incompatible modes, Internat. J. Numer. Methods Engrg., 29, 8, 1595-1638 (1990) · Zbl 0724.73222
[61] Hauret, P.; Kuhl, E.; Ortiz, M., Diamond elements: a finite element/discrete-mechanics approximation scheme with guaranteed optimal convergence in incompressible elasticity, Internat. J. Numer. Methods Engrg., 72, 3, 253-294 (2007) · Zbl 1194.74406
[62] Kikuchi, N., Remarks on 4CST-elements for incompressible materials, Comput. Methods Appl. Mech. Engrg., 37, 1, 109-123 (1983) · Zbl 0487.73084
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.