×

zbMATH — the first resource for mathematics

An alternative alpha finite element method (A\(\alpha \)FEM) for free and forced structural vibration using triangular meshes. (English) Zbl 1423.74910
Summary: An alternative alpha finite element method (A\(\alpha \)FEM) using triangular elements is proposed that significantly improves the accuracy of the standard triangular finite elements and provides a superconvergent solution in the energy norm for the static analysis of two-dimensional solid mechanics problems. In the A\(\alpha \)FEM, the piecewise constant strain field of linear triangular FEM models is enhanced by additional strain terms with an adjustable parameter \(\alpha \) which results in an effectively softer stiffness formulation compared to a linear triangular element. The element is further extended to the free and forced vibration analyses of solids. Several numerical examples show that the A\(\alpha \)FEM achieves high reliability compared to other existing elements in the literature.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74H45 Vibrations in dynamical problems in solid mechanics
Software:
XFEM
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hughes, T.J.R., The finite element method: linear static and dynamic finite element analysis, (1987), Prentice-Hall
[2] Zienkiewicz, O.C.; Taylor, R.L., The finite element method, (2000), Butterworth Heinemann Oxford · Zbl 0991.74002
[3] Liu, G.R.; Quek, S.S., The finite element method: A practical course, (2003), Butterworth Heinemann Oxford · Zbl 1027.74001
[4] Chen, J.S.; Wu, C.T.; Yoon, S.; You, Y., A stabilized conforming nodal integration for Galerkin mesh-free methods, International journal for numerical methods in engineering, 50, 435-466, (2001) · Zbl 1011.74081
[5] Dai, K.Y.; Liu, G.R.; Nguyen, T.T., An \(n\)-sided polygonal smoothed finite element method (nsfem) for solid mechanics, Finite elements in analysis and design, 43, 847-860, (2007)
[6] Dai, K.Y.; Liu, G.R., Free and forced vibration analysis using the smoothed finite element method (SFEM), Journal sound and vibration, 301, 803-820, (2007)
[7] H. Nguyen-Xuan, T. Nguyen-Thoi, A stabilized smoothed finite element method for free vibration analysis of mindlin-reissner plates, Communications in Numerical Methods in Engineering, 2008 (in press) doi:10.1002/cnm.1137 · Zbl 1172.74047
[8] Rabczuk, T.; Bordas, S.; Zi, G., A three dimensional meshfree method for static and dynamic multiple crack nucleation/propagation with crack path continuity, Computational mechanics, 40, 3, 473-495, (2007) · Zbl 1161.74054
[9] Nguyen-Xuan, H.; Rabczuk, T.; Bordas, S.; Debongnie, J.F., A smoothed finite element method for plate analysis, Computer methods in applied mechanics and engineering, 197, 1184-1203, (2008) · Zbl 1159.74434
[10] Nguyen-Thanh, N.; Rabczuk, T.; Nguyen-Xuan, H.; Bordas, S., A smoothed finite element method for shell analysis, Computer methods in applied mechanics and engineering, 198, 165-177, (2008) · Zbl 1194.74453
[11] Rabczuk, T.; Areias, P.; Belytschko, T., A meshfree thin shell method for non-linear dynamic fracture, International journal for numerical methods in engineering, 72, 5, 524-548, (2007) · Zbl 1194.74537
[12] Rabczuk, T.; Areias, P., A meshfree thin shell for arbitrary evolving cracks based on an external enrichment, Computer modeling in engineering and sciences, 16, 2, 115-130, (2006)
[13] Bordas, S.; Rabczuk, T.; Zi, G., Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment, Engineering fracture mechanics, 75, 5, 943-960, (2008)
[14] S. Bordas, T. Rabczuk, H. Nguyen-Xuan, P. Nguyen Vinh, S. Natarajan, T. Bog, Q. Do Minh, H. Nguyen Vinh, Strain smoothing in FEM and XFEM, Computers and Structures, 2008 (in press) doi:10.1016/j.compstruc.2008.07.006
[15] Rabczuk, T.; Belytschko, T., Adaptivity for structured meshfree particle methods in 2D and 3D, International journal for numerical methods in engineering, 63, 11, 1559-1582, (2005) · Zbl 1145.74041
[16] Rabczuk, T.; Belytschko, T., Application of meshfree particle methods to static fracture of reinforced concrete structures, International journal of fracture, 137, 1-4, 19-49, (2006) · Zbl 1197.74175
[17] Rabczuk, T.; Areias, P.M.A.; Belytschko, T., A simplified meshfree method for shear bands with cohesive surfaces, International journal for numerical methods in engineering, 69, 5, 993-1021, (2007) · Zbl 1194.74536
[18] Rabczuk, T.; Belytschko, T., Cracking particles: A simplified meshfree method for arbitrary evolving cracks, International journal for numerical methods in engineering, 61, 13, 2316-2343, (2004) · Zbl 1075.74703
[19] Rabczuk, T.; Belytschko, T.; Xiao, S.P., Stable particle methods based on Lagrangian kernels, Computer methods in applied mechanics and engineering, 193, 12-14, 1035-1063, (2004) · Zbl 1060.74672
[20] Rabczuk, T.; Belytschko, T., A three dimensional large deformation meshfree method for arbitrary evolving cracks, Computer methods in applied mechanics and engineering, 196, 29-30, 2777-2799, (2007) · Zbl 1128.74051
[21] Rabczuk, T., A geometrically non-linear three-dimensional cohesive crack method for reinforced concrete structures, Engineering fracture mechanics, 75, 16, 4740-4758, (2008)
[22] Liu, G.R., A generalized gradient smoothing technique and the smoothed bilinear form for Galerkin formulation of a wide class of computational methods, International journal computation methods, 2, 199-236, (2008) · Zbl 1222.74044
[23] Stéphane P.A. Bordas, Sundararajan Natarajan, On the approximation in the smoothed finite element method (SFEM) (p n/a). Published Online: Aug 12 2009. doi:10.1002/nme.2713 · Zbl 1183.74261
[24] Liu, G.R.; Nguyen-Thoi, T.; Nguyen-Xuan, H.; Lam, K.Y., A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems, Computational structural, 87, 14-26, (2009)
[25] Natarajan, Sundararajan, Numerical integration over arbitrary polygonal domains based on Schwarz-Christoffel conformal mapping, International journal for numerical methods in engineering, 80, 1, 103-134, (2009) · Zbl 1176.74190
[26] Sundararajan Natarajan, et al. A simple integration technique for strong and weak discontinuities in GFEM/XFEM. International Journal for Numerical Methods in Engineering. doi:10.1002/nme.2798 · Zbl 1193.74153
[27] Belytschko, T.; Black, T., Elastic crack growth in finite elements with minimal remeshing, International journal for numerical methods in engineering, 45, 5, 601-620, (1999) · Zbl 0943.74061
[28] Bordas, S.; Moran, B., Enriched finite elements and level sets for damage tolerance assessment of complex structures, Engineering fracture mechanics, 73, 9, 1176-1201, (2006)
[29] Bordas, S.; Nguyen-Vinh, Phu; Dunant, C.; Guidoum, A.; Hung, Nguyen Dang, An extended finite element library, International journal for numerical methods in engineering, 71, 6, 703-732, (2007) · Zbl 1194.74367
[30] Duddu, R.; Bordas, S.; Chopp, D.; Moran, B., A combined extended finite element and level set method for biofilm growth, International journal for numerical methods in engineering, 74, 5, 848-870, (2008) · Zbl 1195.74169
[31] Nguyen, Vinh Phu; Rabczuk, Timon; Bordas, Stéphane; Duflot, Marc, Meshless methods: A review and computer implementation aspects, Mathematics and computers in simulation, 79, 3, 763-813, (2008) · Zbl 1152.74055
[32] Bergan, P.G.; Felippa, C.A., A triangular membrane element with rotational degrees of freedom, Computer methods in applied mechanics and engineering, 50, 25-69, (1985) · Zbl 0593.73073
[33] Felippa, C.A.; Militello, C., Variational formulation of high-performance finite elements: parametrized variational principles, Computers and structures, 50, 1-11, (1990) · Zbl 0709.73075
[34] Felippa, C.A., A survey of parametrized variational principles and applications to computational mechanics, Computer methods in applied mechanics and engineering, 113, 109-139, (1994) · Zbl 0848.73063
[35] Liu, G.R.; Nguyen-Thoi, T.; Lam, K.Y., A novel alpha finite element method (\(\alpha\)FEM) for exact solution to mechanics problems using triangular and tetrahedral elements, Computer methods in applied mechanics and engineering, 197, 3883-3897, (2008) · Zbl 1194.74433
[36] Liu, G.R.; Nguyen-Xuan, H.; Nguyen-Thoi, T.; Xu, X., A novel Galerkin-like weakform and a superconvergent alpha finite element method (S\(\alpha\)FEM) for mechanics problems using triangular meshes, Journal of computational physics, 228, 4055-4087, (2009) · Zbl 1273.74542
[37] Liu, G.R.; Xu, X.; Zhang, G.Y.; Nguyen-Thoi, T., A superconvergent point interpolation method (SC-PIM) with piecewise linear strain field using triangular mesh, International journal for numerical methods in engineering, 77, 1439-1467, (2008) · Zbl 1156.74394
[38] Belytschko, T.; Bachrach, W.E., Efficient implementation of quadrilaterals with high coarse-mesh accuracy, Computer methods in applied mechanics and engineering, 54, 279-301, (1986) · Zbl 0579.73075
[39] Belytschko, T.; Bindeman, L.P., Assumed strain stabilization of the 4-node quadrilateral with 1-point quadrature for nonlinear problems, Computer methods in applied mechanics and engineering, 88, 311-340, (1983) · Zbl 0742.73019
[40] Fredriksson, M.; Ottosen, N.S., Fast and accurate 4-node quadrilateral, International journal for numerical methods in engineering, 61, 1809-1834, (2004) · Zbl 1075.74644
[41] Piltner, R.; Taylor, R.L., Triangular finite elements with rotational degrees of freedom and enhanced strain modes, Computers and structures, 75, 361-368, (2000)
[42] Simo, J.C.; Rifai, M.S., A class of mixed assumed strain methods and the method of incompatible modes, International journal for numerical methods in engineering, 29, 1595-1638, (1990) · Zbl 0724.73222
[43] Timoshenko, S.P.; Goodier, J.N., Theory of elasticity, (1970), McGraw New York · Zbl 0266.73008
[44] Liu, G.R.; Nguyen-Thoi, T.; Lam, K.Y., An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids, Journal sound and vibration, 320, 1100-1130, (2009)
[45] Nagashima, T., Node-by-node meshless approach and its applications to structural analyses, International journal for numerical methods in engineering, 46, 341-385, (1999) · Zbl 0965.74079
[46] Gu, Y.T.; Liu, G.R., A meshless local Petrov-Galerkin (MPLG) method for free and vibration analyses for solids, Computational mechanics, 27, 188-198, (2001) · Zbl 1162.74498
[47] Zhao, C.; Steven, G.P., Asymptotic solutions for predicted natural frequencies of two-dimensional elastic solid vibration problems in finite element analysis, International journal for numerical methods in engineering, 39, 2821-2835, (1996) · Zbl 0881.73130
[48] Zhao, C.; Steven, G.P., Analytical solutions of mass transport problems for error estimation of finite/infinite element methods, Communications in numerical methods in engineering, 11, 13-23, (1995) · Zbl 0811.65073
[49] Brebbia, C.A.; Telles, J.C.; Wrobel, L.C., Boundary element techniques, (1984), Springer Berlin · Zbl 0556.73086
[50] Bathe, K.J., Finite element procedures, (1996), Prentice-Hall, Massachusetts (MIT) Englewood Cliffs, NJ · Zbl 0511.73065
[51] Nayroles, B.; Touzot, G.; Villon, P., Generalizing the finite element method: diffuse approximation and diffuse elements, Computational mechanics, 10, 307-318, (1992) · Zbl 0764.65068
[52] Bletzinger, K.; Bischoff, M.; Ramm, E., A unified approach for shear locking-free triangular and rectangular shell finite elements, Computation structural, 75, 321-334, (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.