×

Improved coupling of finite element method with material point method based on a particle-to-surface contact algorithm. (English) Zbl 1423.74870

Summary: For extreme deformation problems, material point method (MPM) takes competitive advantages compared with finite element method (FEM) which often encounters mesh distortion. However, for small deformation problems, FEM is still more efficient and accurate than MPM in most cases. Hence, a coupled finite element material point (CFEMP) method and an adaptive finite element material point method (AFEMP) have been proposed by our group to take advantages of both methods. Because the coupling between MPM particles and FEM elements was implemented based on the MPM grid-based contact method, both CFEMP and AFEMP demand a high degree of consistence of meshing between FEM domain and MPM domain. This may lead to over meshing in FEM domain, thus significantly decreases the time step size and increases computational cost as well as data storage. In order to allow arbitrary inconsistent meshing, the CFEMP and AFEMP methods are further improved in this article. The coupling between the MPM particles and FEM elements is implemented based on a particle-to-surface contact algorithm rather than the MPM grid-based contact method, so that the consistent meshing is no more needed. Thus, the meshing of FEM body can be much coarser than the MPM grid. Numerical studies illustrate that the robustness, efficiency and accuracy of the improved CFEMP (ICFEMP) method and the improved AFEMP (IAFEMP) method are much higher than MPM, CFEMP and AFEMP.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
74M15 Contact in solid mechanics

Software:

MPM3DMP; MPM3D
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Sulsky, D.; Chen, Z.; Schreyer, H. L., A particle method for history-dependent materials, Comput. Methods Appl. Mech. Engrg., 118, 1-2, 179-196 (1994) · Zbl 0851.73078
[2] Sulsky, D.; Zhou, S. J.; Schreyer, H. L., Application of a particle-in-cell method to solid mechanics, Comput. Phys. Comm., 87, 1-2, 236-252 (1995) · Zbl 0918.73334
[3] Huang, P.; Zhang, X.; Ma, S.; Huang, X., Contact algorithms for the material point method in impact and penetration simulation, Internat. J. Numer. Methods Engrg., 85, 498-517 (2011) · Zbl 1217.74145
[4] Gong, W. W.; Zhang, X.; Qiu, X. M., Numerical study of dynamic compression process of aluminum foam with material point method, CMES Comput. Model. Eng. Sci., 82, 3, 195-213 (2011) · Zbl 1356.74037
[5] Hu, W. Q.; Chen, Z., Model-based simulation of the synergistic effects of blast and fragmentation on a concrete wall using the MPM, Int. J. Impact Eng., 32, 12, 2066-2096 (2006)
[6] Ma, S.; Zhang, X.; Lian, Y. P.; Zhou, X., Simulation of high explosive explosion using adaptive material point method, CMES Comput. Model. Eng. Sci., 39, 2, 101-123 (2009) · Zbl 1257.76045
[7] Ma, S.; Zhang, X.; Qiu, X. M., Comparison study of MPM and SPH in modeling hypervelocity impact problems, Int. J. Impact Eng., 36, 2, 272-282 (2009)
[8] Huang, P.; Zhang, X.; Ma, S.; Wang, H. K., Shared memory OpenMP parallelization of explicit MPM and its application to hypervelocity impact, CMES Comput. Model. Eng. Sci., 38, 2, 119-147 (2008) · Zbl 1357.74082
[9] Gong, W. W.; Liu, Y.; Zhang, X.; Ma, H. L., Numerical investigation on dynamical response of aluminum foam subject to hypervelocity impact with material point method, CMES Comput. Model. Eng. Sci., 83, 5, 527-545 (2012)
[10] Liu, Y.; Wang, H. K.; Zhang, X., A multiscale framework for high-velocity impact process with combined material point method and molecular dynamics, Int. J. Mech. Mater. Sci., 9, 2, 127-139 (2013)
[11] Nairn, J. A., Material point method calculations with explicit cracks, CMES Comput. Model. Eng. Sci., 4, 6, 649-663 (2003) · Zbl 1064.74176
[12] Daphalapurkar, N. P.; Lu, H.; Coker, D.; Komanduri, R., Simulation of dynamic crack growth using the generalized interpolation material point (GIMP) method, Int. J. Fract., 143, 1, 79-102 (2007) · Zbl 1198.74068
[13] Yang, P. F.; Gan, Y.; Zhang, X.; Chen, Z.; Qi, W. J.; Liu, P., Improved decohesion modeling with the material point method for simulating crack evolution, Int. J. Fract., 186, 1-2, 177-184 (2014)
[14] Banerjee, B.; Guilkey, J. E.; Harman, T. B.; Schmidt, J. A.; McMurtry, P. A., Simulation of impact and fragmentation with the material point method, (Proceedings of the 11th International Conference on Fracture, Turin, Italy (2005)), 689
[15] Shen, L. M., A rate-dependent Damage/Decohesion model for simulating glass fragmentation under impact using the material point method, CMES Comput. Model. Eng. Sci., 49, 1, 23-45 (2009)
[16] Yang, P. F.; Liu, Y.; Zhang, X.; Zhou, X.; Zhao, Y. L., Simulation of fragmentation with material point method based on gurson model and random failure, CMES Comput. Model. Eng. Sci., 85, 3, 207-237 (2012) · Zbl 1356.74013
[17] Zhang, D. Z.; Zou, Q.; VanderHeyden, W. B.; Ma, X., Material point method applied to multiphase flows, J. Comput. Phys., 227, 6, 3159-3173 (2008) · Zbl 1329.76288
[18] Wieckowski, Z., The material point method in large strain engineering problems, Comput. Methods Appl. Mech. Engrg., 193, 39-41, 4417-4438 (2004) · Zbl 1068.74085
[19] York, A. R.; Sulsky, D.; Schreyer, H. L., The material point method for simulation of thin membranes, International Journal for Numerical Methods in Engineering, 44, 1429-1456 (1999) · Zbl 0971.74079
[20] Bardenhagen, S. G.; Guilkey, J. E.; Roessig, K. M.; Brackbill, J. U.; Witzel, W. M., An improved contact algorithm for the material point method and application to stress propagation in granular material, CMES Comput. Model. Eng. Sci., 2, 509-522 (2001) · Zbl 1147.74375
[21] Bardenhagen, S. G.; Brackbill, J. U.; Sulsky, D., The material-point method for granular materials, Comput. Methods Appl. Mech. Engrg., 187, 3-4, 529-541 (2000) · Zbl 0971.76070
[22] Hu, W.; Chen, Z., A multi-mesh MPM for simulating the meshing process of spur gears, Comput. Struct., 81, 1991-2002 (2003)
[23] Ma, Z.; Zhang, X.; Huang, P., An object-oriented MPM framework for simulation of large deformation and contact of numerous grains, CMES Comput. Model. Eng. Sci., 55, 1, 61-87 (2010)
[24] Attaway, S.; Heinstein, M.; Swegle, J., Coupling of smooth particle hydrodynamics with the finite element method, Nucl. Eng. Des., 150, 199-205 (1994)
[25] Johnson, G. R., Linking of lagrangian particle methods to standard finite element methods for high velocity impact computations, Nucl. Eng. Des., 150, 265-274 (1994)
[26] Johnson, G. R.; Stryk, R. A., Conversion of 3D distorted element method for hypervelocity impact simulation, Int. J. Impact Eng., 28, 947-966 (2003)
[27] Hu, D.; Long, T.; Xiao, Y.; Han, X.; Gu, Y., Fluid-structure interaction analysis by coupled FE-SPH model based on a novel searching algorithm, Comput. Methods Appl. Mech. Engrg., 276, 266-286 (2014) · Zbl 1423.74272
[28] Zhang, X.; Sze, K. Y.; Ma, S., An explicit material point finite element method for hyper-velocity impact, International Journal for Numerical Methods in Engineering, 66, 4, 689-706 (2006) · Zbl 1110.74861
[29] Lian, Y. P.; Zhang, X.; Zhou, X.; Ma, Z. T., A FEMP method and its application in modeling dynamic response of reinforced concrete subjected to impact loading, Comput. Methods Appl. Mech. Engrg., 200, 17-20, 1659-1670 (2011) · Zbl 1228.74116
[30] Lian, Y. P.; Zhang, X.; Liu, Y., Coupling of finite element method with material point method by local multi-mesh contact method, Comput. Methods Appl. Mech. Engrg., 200, 3482-3494 (2011) · Zbl 1230.74187
[31] Lian, Y. P.; Liu, Y.; Zhang, X., Coupling of membrane element with material point method for fluid-membrane interaction problems, Int. J. Mech. Mater. Sci., 10, 199-211 (2014)
[32] Lian, Y. P.; Zhang, X.; Liu, Y., An adaptive finite element material point method and its application in extreme deformation problems, Comput. Methods Appl. Mech. Engrg., 241-244, 1, 275-285 (2012) · Zbl 1353.74072
[33] Zhang, X.; Lian, Y. P.; Liu, Y.; Zhou, X., Material Point Method (2013), Tsinghua University Press: Tsinghua University Press Beijing
[34] Belytschko, T.; Lin, J. I., A three-dimensional impact-penetration algorithm with erosion, Comput. Struct., 25, 1, 95-104 (1987) · Zbl 0603.73078
[35] Wang, F. J.; Cheng, J. G.; Yao, Z. H., A contact searching algorithm for contact-impact problems, Acta Mech. Sin., 16, 4, 374-382 (2000)
[36] Benson, D. J.; Hallquist, J. O., A single surface contact algorithm for the post-buckling analysis of shell structures, Comput. Methods Appl. Mech. Engrg., 78, 2, 141-163 (1990) · Zbl 0708.73079
[37] Hallquist, J.; Goudreau, G.; Benson, D., Sliding interfaces with contact-impact in large-scale lagrangian computations, Comput. Methods Appl. Mech. Engrg., 51, 1-3, 107-137 (1985) · Zbl 0567.73120
[38] Piekutowski, A. J.; Forrestal, M. J.; Poormon, K. L.; Warren, T. L., Perforation of aluminum plates with ogive-nose steel rods at normal and oblique impacts, Int. J. Impact Eng., 18, 877-887 (1996)
[39] Idelsohn, S. R.; Marti, J.; Limache, A.; Onate, E., Unified lagrangian formulation for elastic solids and incompressible fluids: Application to fluid-structure interaction problems via the PFEM, Comput. Methods Appl. Mech. Engrg., 197, 1762-1776 (2008) · Zbl 1194.74415
[40] Walhorn, E.; Kolke, A.; Hubner, B.; Dinkler, D., Fluid-structure coupling within a monolithic model involving free surface flows, Comput. Struct., 83, 25-26, 2100-2111 (2005)
[41] Zhang, Y.; Zou, Q.; Greaves, D.; Reeve, D.; Hunt-Raby, A.; Graham, D.; James, P.; Lv, X., A level set immersed boundary method for water entry and exit, Commun. Comput. Phys., 8, 2, 265-288 (2010) · Zbl 1364.76102
[42] Shao, S. D., Incompressible SPH simulation of water entry of a free-falling object, Internat. J. Numer. Methods Fluids, 59, 91-115 (2009) · Zbl 1391.76633
[44] Morris, J. P.; Fox, P. J.; Zhu, Y., Modeling low reynolds number incompressible flows using SPH, J. Comput. Phys., 136, 1, 214-226 (1997) · Zbl 0889.76066
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.