×

zbMATH — the first resource for mathematics

Multiscale structural topology optimization with an approximate constitutive model for local material microstructure. (English) Zbl 1423.74772
Summary: This paper builds on our recent work [the authors, ibid. 278, 524–542 (2014; Zbl 1423.74770)] on multiscale structural topology optimization where at the microscopic scale, local materials are optimized concurrently according to current loading status. The former design framework requires intensive computational cost due to large number of repetitive local material optimizations. To circumvent this limitation, in the present work, we construct a reduced database model viewing the local material optimization process as a generalized constitutive behavior using separated representations. In this model, the database is built from a set of numerical experiments of local material optimizations in the macroscopic strain tensor space. Each value in the database corresponds to the strain energy density evaluated on a material microstructure, optimized according to the imposed macroscopic strain. By tensor decomposition, a continuous representation of the strain energy density is built as a sum of products of one dimensional interpolation functions. As a result of this a priori off-line step, the effective strain-energy and stress-strain relations required for macroscopic structural evaluation and optimization are provided in a numerically explicit manner. The results given by the reduced database model are compared with full-scale results. It is also shown that this explicit constitutive behavior representation can well serve multiscale structural design at a significantly reduced computational cost.

MSC:
74P15 Topological methods for optimization problems in solid mechanics
74M25 Micromechanics of solids
Software:
TensorToolbox
PDF BibTeX Cite
Full Text: DOI
References:
[1] Fullwood, D. T.; Niezgoda, S. R.; Adams, B. L.; Kalidindi, S. R., Microstructure sensitive design for performance optimization, Prog. Mater. Sci., 55, 6, 477-562 (2010)
[2] Deaton, J. D.; Grandhi, R. V., A survey of structural and multidisciplinary continuum topology optimization: post 2000, Struct. Multidiscip. Optim., 49, 1, 1-38 (2014)
[3] Cadman, J.; Zhou, S.; Chen, Y.; Li, Q., On design of multi-functional microstructural materials, J. Mater. Sci., 48, 1, 51-66 (2013)
[4] Su, W.; Liu, S., Size-dependent optimal microstructure design based on couple-stress theory, Struct. Multidiscip. Optim., 42, 2, 243-254 (2010)
[5] Huang, X.; Zhou, S. W.; Xie, Y. M.; Li, Q., Topology optimization of microstructures of cellular materials and composites for macrostructures, Comput. Mater. Sci., 67, 397-407 (2013)
[6] Yan, X.; Huang, X.; Zha, Y.; Xie, Y. M., Concurrent topology optimization of structures and their composite microstructures, Comput. Struct., 133, 103-110 (2014)
[7] Zhang, W.; Sun, S., Scale-related topology optimization of cellular materials and structures, Internat. J. Numer. Methods Engrg., 68, 9, 993-1011 (2006) · Zbl 1127.74035
[8] Rodrigues, H.; Guedes, J. M.; Bendsøe, M. P., Hierarchical optimization of material and structure, Struct. Multidiscip. Optim., 24, 1, 1-10 (2002)
[9] Bendsøe, M. P.; Diaz, A. R.; Lipton, R.; Taylor, J. E., Optimal design of material properties and material distribution for multiple loading conditions, Internat. J. Numer. Methods Engrg., 38, 7, 1149-1170 (1995) · Zbl 0822.73047
[10] Theocaris, P. S.; Stavroulaki, G. E., Optimal material design in composites: An iterative approach based on homogenized cells, Comput. Methods Appl. Mech. Engrg., 169, 1-2, 31-42 (1999) · Zbl 0945.74054
[11] Coelho, P. G.; Fernandes, P. R.; Guedes, J. M.; Rodrigues, H. C., A hierarchical model for concurrent material and topology optimisation of three-dimensional structures, Struct. Multidiscip. Optim., 35, 2, 107-115 (2008)
[12] Setoodeh, S.; Abdalla, M. M.; Gürdal, Z., Combined topology and fiber path design of composite layers using cellular automata, Struct. Multidiscip. Optim., 30, 6, 413-421 (2005)
[13] Gao, T.; Zhang, W. H.; Duysinx, P., Simultaneous design of structural layout and discrete fiber orientation using bi-value coding parameterization and volume constraint, Struct. Multidiscip. Optim., 48, 6, 1075-1088 (2013)
[14] Xia, L.; Breitkopf, P., Concurrent topology optimization design of material and structure within \(fe^2\) nonlinear multiscale analysis framework, Comput. Methods Appl. Mech. Engrg., 278, 524-542 (2014) · Zbl 1423.74770
[15] Feyel, F.; Chaboche, J., \( \text{FE}^2\) multiscale approach for modelling the elastoviscoplastic behaviour of long fibre sic/ti composite materials, Comput. Methods Appl. Mech. Engrg., 183, 3-4, 309-330 (2000) · Zbl 0993.74062
[16] Kouznetsova, V.; Brekelmans, W. A.M.; Baaijens, F. P.T., An approach to micro-macro modeling of heterogeneous materials, Comput. Mech., 27, 1, 37-48 (2001) · Zbl 1005.74018
[17] Nakshatrala, P. B.; Tortorelli, D. A.; Nakshatrala, K. B., Nonlinear structural design using multiscale topology optimization. part i: Static formulation, Comput. Methods Appl. Mech. Engrg., 261-262, 167-176 (2013) · Zbl 1286.74077
[18] Mahdavi, A.; Balaji, R.; Frecker, M.; Mockensturm, E. M., Topology optimization of 2d continua for minimum compliance using parallel computing, Struct. Multidiscip. Optim., 32, 2, 121-132 (2006)
[19] Queipo, N. B.; Haftka, R. T.; Shyy, W.; Goel, T.; Vaidyanathan, R.; Tucker, P. K., Surrogate-based analysis and optimization, Prog. Aerosp. Sci., 41, 1, 1-28 (2005)
[20] Forrester, A.; Keane, A., Recent advances in surrogate-based optimization, Prog. Aerosp. Sci., 45, 1-3, 50-79 (2009)
[21] Xia, L.; Breitkopf, P., A reduced multiscale model for nonlinear structural topology optimization, Comput. Methods Appl. Mech. Engrg., 280, 117-134 (2014) · Zbl 1423.74771
[22] Fritzen, F.; Leuschner, M., Reduced basis hybrid computational homogenization based on a mixed incremental formulation, Comput. Methods Appl. Mech. Engrg., 260, 143-154 (2013) · Zbl 1286.74081
[23] Fritzen, F.; Hodapp, M.; Leuschner, M., Gpu accelerated computational homogenization based on a variational approach in a reduced basis framework, Comput. Methods Appl. Mech. Engrg., 278, 186-217 (2014) · Zbl 1423.74881
[24] Yvonnet, J.; He, Q. C., The reduced model multiscale method (r3m) for the non-linear homogenization of hyperelastic media at finite strains, J. Comput. Phys., 223, 1, 341-368 (2007) · Zbl 1163.74048
[25] Hernandez, J.; Oliver, J.; Huespe, A.; Caicedo, M.; Cante, J., High-performance model reduction techniques in computational multiscale homogenization, Comput. Methods Appl. Mech. Engrg., 276, 149-189 (2014) · Zbl 1423.74785
[26] Lamari, H.; Ammar, A.; Cartraud, P.; Legrain, G.; Chinesta, F.; Jacquemin, F., Routes for efficient computational homogenization of nonlinear materials using the proper generalized decompositions, Arch. Comput. Methods Eng., 17, 4, 373-391 (2010) · Zbl 1269.74187
[27] El Halabi, F.; Gonzlez, D.; Chico, A.; Doblaré, M., \(Fe^2\) multiscale in linear elasticity based on parametrized microscale models using proper generalized decomposition, Comput. Methods Appl. Mech. Engrg., 257, 183-202 (2013) · Zbl 1286.74013
[28] Cremonesi, M.; Néron, D.; Guidault, P. A.; Ladevèze, P., A pgd-based homogenization technique for the resolution of nonlinear multiscale problems, Comput. Methods Appl. Mech. Engrg., 267, 275-292 (2013) · Zbl 1286.74084
[29] Temizer, I.; Zohdi, T., A numerical method for homogenization in non-linear elasticity, Comput. Mech., 40, 2, 281-298 (2007) · Zbl 1163.74041
[30] Temizer, I.; Wriggers, P., An adaptive method for homogenization in orthotropic nonlinear elasticity, Comput. Methods Appl. Mech. Engrg., 196, 35-36, 3409-3423 (2007) · Zbl 1173.74378
[31] Oskay, C.; Fish, J., Eigendeformation-based reduced order homogenization for failure analysis of heterogeneous materials, Comput. Methods Appl. Mech. Engrg., 196, 7, 1216-1243 (2007) · Zbl 1173.74380
[32] Yuan, Z.; Fish, J., Multiple scale eigendeformation-based reduced order homogenization, Comput. Methods Appl. Mech. Engrg., 198, 21-26, 2016-2038 (2009) · Zbl 1227.74051
[33] Michel, J. C.; Suquet, P., Nonuniform transformation field analysis, Int. J. Solids Struct., 40, 6937-6955 (2003) · Zbl 1057.74031
[34] Michel, J. C.; Suquet, P., Computational analysis of nonlinear composite structures using the nonuniform transformation field analysis, Comput. Methods Appl. Mech. Engrg., 193, 5477-5502 (2004) · Zbl 1112.74471
[35] Fritzen, F.; Böhlke, T., Nonuniform transformation field analysis of materials with morphological anisotropy, Compos. Sci. Technol., 71, 433-442 (2011)
[36] Fritzen, F.; Böhlke, T., Reduced basis homogenization of viscoelastic composites, Compos. Sci. Technol., 76, 84-91 (2013)
[37] Yvonnet, J.; Gonzalez, D.; He, Q. C., Numerically explicit potentials for the homogenization of nonlinear elastic heterogeneous materials, Comput. Methods Appl. Mech. Engrg., 198, 33-36, 2723-2737 (2009) · Zbl 1228.74067
[38] Yvonnet, J.; Monteiro, E.; He, Q. C., Computational homogenization method and reduced database model for hyperelastic heterogeneous structures, Internat. J. Multiscale Comput. Eng., 11, 3, 201-225 (2013)
[39] Huang, X.; Xie, Y. M., Topology Optimization of Continuum Structures: Methods and Applications (2010), John Wiley & Sons: John Wiley & Sons Chichester
[40] Bendsøe, M. P.; Sigmund, O., Topology Optimization: Theory, Methods and Applications (2003), Springer-Verlag: Springer-Verlag Berlin · Zbl 1059.74001
[42] Michel, J. C.; Moulinec, H.; Suquet, P., Effective properties of composite materials with periodic microstructure: a computational approach, Comput. Methods Appl. Mech. Engrg., 172, 1-4, 109-143 (1999) · Zbl 0964.74054
[43] Hill, R., The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. Sect. A, 65, 5, 349-354 (1952)
[44] Hill, R., Elastic properties of reinforced solids: Some theoretical principles, J. Mech. Phys. Solids, 11, 5, 357-372 (1963) · Zbl 0114.15804
[45] Kiers, H., Towards a standardized notation and terminology in multiway analysis, J. Chemometr., 14, 3, 105-122 (2010)
[46] Carroll, J.; Chang, J. J., Analysis of individual differences in multidimensional scaling via an \(n\)-way generalization of eckart-young decomposition, Psychometrika, 35, 3, 283-319 (1970) · Zbl 0202.19101
[47] Zhang, T.; Golub, G. H., Rank-one approximation to high order tensors, SIAM J. Matrix Anal. Appl., 23, 2, 534-550 (2002) · Zbl 1001.65036
[49] Xia, L.; Raghavan, B.; Breitkopf, P.; Zhang, W., Numerical material representation using proper orthogonal decomposition and diffuse approximation, Appl. Math. Comput., 224, 450-462 (2013) · Zbl 1334.74099
[50] Huang, X.; Radman, A.; Xie, Y. M., Topological design of microstructures of cellular materials for maximum bulk or shear modulus, Comput. Mater. Sci., 50, 6, 1861-1870 (2011)
[51] Huang, X.; Xie, Y. M.; Jia, B.; Li, Q.; Zhou, S. W., Evolutionary topology optimization of periodic composites for extremal magnetic permeability and electrical permittivity, Struct. Multidiscip. Optim., 46, 3, 385-398 (2012) · Zbl 1274.78096
[52] Bendsøe, M. P.; Sigmund, O., Material interpolation schemes in topology optimization, Arch. Appl. Mech., 69, 635-654 (1999) · Zbl 0957.74037
[53] Sigmund, O., New class of extremal composites, J. Mech. Phys. Solids, 48, 2, 397-428 (2000) · Zbl 0994.74056
[54] Gao, T.; Zhang, W.; Duysinx, P., A bi-value coding parameterization scheme for the discrete optimal orientation design of the composite laminate, Internat. J. Numer. Methods Engrg., 91, 1, 98-114 (2012) · Zbl 1246.74043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.