×

zbMATH — the first resource for mathematics

An integrated fast Fourier transform-based phase-field and crystal plasticity approach to model recrystallization of three dimensional polycrystals. (English) Zbl 1423.74712
Summary: A fast Fourier transform (FFT) based computational approach integrating phase-field method (PFM) and crystal plasticity (CP) is proposed to model recrystallization of plastically deformed polycrystals in three dimensions (3-D). CP at the grain level is employed as the constitutive description to predict the inhomogeneous distribution of strain and stress fields after plastic deformation of a polycrystalline aggregate while the kinetics of recrystallization is obtained employing a PFM in the plastically deformed grain structure. The elasto-viscoplastic equilibrium is guaranteed during each step of temporal phase-field evolution. Static recrystallization involving plasticity during grain growth is employed as an example to demonstrate the proposed computational framework. The simulated recrystallization kinetics is compared using the classical Johnson-Mehl-Avrami-Kolmogorov (JMAK) theory. This study also gives us a new computational pathway to explore the plasticity-driven evolution of 3D microstructures.

MSC:
74N05 Crystals in solids
74E15 Crystalline structure
65T50 Numerical methods for discrete and fast Fourier transforms
74A60 Micromechanical theories
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Choi, S.-H.; Cho, J. H., Primary recrystallization modelling for interstitial free steels, Mater. Sci. Eng. A, 405, 86-101 (2005)
[2] Humphreys, F. J.; Hatherly, M., Recrystallization and Related Annealing Phenomena (1995), Elsevier
[3] Avrami, M., Kinetics of phase change. I general theory, J. Chem. Phys., 7, 1103 (1939)
[4] Avrami, M., Kinetics of phase change. II transformation-time relations for random distribution of nuclei, J. Chem. Phys., 8, 212 (1940)
[5] Radhakrishnan, B.; Sarma, G.; Zacharia, T., Modeling the kinetics and microstructural evolution during static recrystallization—Monte Carlo simulation of recrystallization, Acta Mater., 46, 4415-4433 (1998)
[6] Holm, E. A.; Miodownik, M. A.; Rollett, A. D., On abnormal subgrain growth and the origin of recrystallization nuclei, Acta Mater., 51, 2701-2716 (2003)
[7] Rollett, A., Overview of modeling and simulation of recrystallization, Prog. Mater. Sci., 42, 79-99 (1997)
[8] Raabe, D.; Becker, R. C., Coupling of a crystal plasticity finite-element model with a probabilistic cellular automaton for simulating primary static recrystallization in aluminium, Modelling Simul. Mater. Sci. Eng., 8, 445 (2000)
[9] Raabe, D.; Hantcherli, L., 2D cellular automaton simulation of the recrystallization texture of an IF sheet steel under consideration of Zener pinning, Comput. Mater. Sci., 34, 299-313 (2005)
[10] Nguyen-Xuan, H.; Hoang, T.; Nguyen, V. P., An isogeometric analysis for elliptic homogenization problems, Comput. Math. Appl., 67, 1722-1741 (2014) · Zbl 1362.65128
[11] Chen, L.; Nguyen-Thanh, N.; Nguyen-Xuan, H.; Rabczuk, T.; Bordas, S. P.A.; Limbert, G., Explicit finite deformation analysis of isogeometric membranes, Comput. Methods Appl. Mech. Engrg., 277, 104-130 (2014) · Zbl 1423.74525
[12] Steinbach, I.; Apel, M., Multi phase field model for solid state transformation with elastic strain, Physica D, 217, 153-160 (2006) · Zbl 1136.74365
[13] Boettinger, W.; Warren, J.; Beckermann, C.; Karma, A., Phase-field simulation of solidification 1, Annu. Rev. Mater. Res., 32, 163-194 (2002)
[14] Chen, L.-Q., Phase-field models for microstructure evolution, Annu. Rev. Mater. Res., 32, 113-140 (2002)
[15] Takaki, T.; Hisakuni, Y.; Hirouchi, T.; Yamanaka, A.; Tomita, Y., Multi-phase-field simulations for dynamic recrystallization, Comput. Mater. Sci., 45, 881-888 (2009)
[16] Takaki, T.; Tomita, Y., Static recrystallization simulations starting from predicted deformation microstructure by coupling multi-phase-field method and finite element method based on crystal plasticity, Int. J. Mech. Sci., 52, 320-328 (2010)
[17] Zhu, B.; Militzer, M., 3D phase field modelling of recrystallization in a low-carbon steel, Modelling Simul. Mater. Sci. Eng., 20, 085011 (2012)
[18] Suwa, Y.; Saito, Y.; Onodera, H., Phase-field simulation of recrystallization based on the unified subgrain growth theory, Comput. Mater. Sci., 44, 286-295 (2008)
[19] Hu, S.; Chen, L., A phase-field model for evolving microstructures with strong elastic inhomogeneity, Acta Mater., 49, 1879-1890 (2001)
[20] Krill, C.; Chen, L.-Q., Computer simulation of 3-D grain growth using a phase-field model, Acta Mater., 50, 3059-3075 (2002)
[21] Chen, L.-Q.; Yang, W., Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters: the grain-growth kinetics, Phys. Rev. B, 50, 15752 (1994)
[22] Koslowski, M.; Cuitino, A. M.; Ortiz, M., A phase-field theory of dislocation dynamics, strain hardening and hysteresis in ductile single crystals, J. Mech. Phys. Solids, 50, 2597-2635 (2002) · Zbl 1094.74563
[23] Rodney, D.; Le Bouar, Y.; Finel, A., Phase field methods and dislocations, Acta Mater., 51, 17-30 (2003)
[24] Wang, Y. U.; Jin, Y.; Cuitino, A.; Khachaturyan, A., Nanoscale phase field microelasticity theory of dislocations: model and 3D simulations, Acta Mater., 49, 1847-1857 (2001)
[25] Gurtin, M. E., A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations, J. Mech. Phys. Solids, 50, 5-32 (2002) · Zbl 1043.74007
[26] Boussinot, G.; Finel, A.; Le Bouar, Y., Phase-field modeling of bimodal microstructures in nickel-based superalloys, Acta Mater., 57, 921-931 (2009)
[27] Zhou, N.; Shen, C.; Mills, M.; Wang, Y., Contributions from elastic inhomogeneity and from plasticity to \(\gamma^\prime\) rafting in single-crystal Ni-Al, Acta Mater., 56, 6156-6173 (2008)
[28] Roters, F.; Eisenlohr, P.; Hantcherli, L.; Tjahjanto, D.; Bieler, T.; Raabe, D., Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications, Acta Mater., 58, 1152-1211 (2010)
[29] Guo, X.; Shi, S.-Q.; Ma, X., Elastoplastic phase field model for microstructure evolution, Appl. Phys. Lett., 87 (2005), 221910, 1-3
[30] Ubachs, R.; Schreurs, P.; Geers, M., Phase field dependent viscoplastic behaviour of solder alloys, Int. J. Solids Struct., 42, 2533-2558 (2005) · Zbl 1094.74012
[31] Uehara, T.; Tsujino, T.; Ohno, N., Elasto-plastic simulation of stress evolution during grain growth using a phase field model, J. Cryst. Growth, 300, 530-537 (2007)
[32] Yamanaka, A.; Takaki, T.; Tomita, Y., Elastoplastic phase-field simulation of self-and plastic accommodations in Cubic \(\to\) tetragonal martensitic transformation, Mater. Sci. Eng. A, 491, 378-384 (2008)
[33] Gaubert, A.; Le Bouar, Y.; Finel, A., Coupling phase field and viscoplasticity to study rafting in Ni-based superalloys, Phil. Mag., 90, 375-404 (2010)
[34] Ammar, K.; Appolaire, B.; Cailletaud, G.; Forest, S., Combining phase field approach and homogenization methods for modelling phase transformation in elastoplastic media, Eur. J. Comput. Mech./Rev. Eur. Méc. Numér., 18, 485-523 (2009) · Zbl 1278.74139
[35] Ammar, K.; Appolaire, B.; Cailletaud, G.; Forest, S., Phase field modeling of elasto-plastic deformation induced by diffusion controlled growth of a misfitting spherical precipitate, Phil. Mag. Lett., 91, 164-172 (2011)
[36] Lebensohn, R., N-site modeling of a 3D viscoplastic polycrystal using fast Fourier transform, Acta Mater., 49, 2723-2737 (2001)
[37] Lebensohn, R.; Liu, Y.; Castañeda, P. P., Macroscopic properties and field fluctuations in model power-law polycrystals: full-field solutions versus self-consistent estimates, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 460, 1381-1405 (2004) · Zbl 1079.74053
[38] Lebensohn, R.; Liu, Y.; Ponte Castaneda, P., On the accuracy of the self-consistent approximation for polycrystals: comparison with full-field numerical simulations, Acta Mater., 52, 5347-5361 (2004)
[39] Lebensohn, R. A.; Brenner, R.; Castelnau, O.; Rollett, A. D., Orientation image-based micromechanical modelling of subgrain texture evolution in polycrystalline copper, Acta Mater., 56, 3914-3926 (2008)
[40] Lebensohn, R. A.; Kanjarla, A. K.; Eisenlohr, P., An elasto-viscoplastic formulation based on fast Fourier transforms for the prediction of micromechanical fields in polycrystalline materials, Int. J. Plast., 32, 59-69 (2012)
[41] Prakash, A.; Lebensohn, R., Simulation of micromechanical behavior of polycrystals: finite elements versus fast Fourier transforms, Modelling Simul. Mater. Sci. Eng., 17, 064010 (2009)
[42] Moulinec, H.; Suquet, P., A numerical method for computing the overall response of nonlinear composites with complex microstructure, Comput. Methods Appl. Mech. Engrg., 157, 69-94 (1998) · Zbl 0954.74079
[43] Michel, J.; Moulinec, H.; Suquet, P., A computational method based on augmented Lagrangians and fast Fourier transforms for composites with high contrast, CMES Comput. Model. Eng. Sci., 1, 79-88 (2000)
[44] Michel, J.; Moulinec, H.; Suquet, P., A computational scheme for linear and non-linear composites with arbitrary phase contrast, Internat. J. Numer. Methods Engrg., 52, 139-160 (2001)
[45] Bhattacharyya, S.; Heo, T. W.; Chang, K.; Chen, L.-Q., A phase-field model of stress effect on grain boundary migration, Modelling Simul. Mater. Sci. Eng., 19, 035002 (2011)
[46] Anglin, B. S.; Lebensohn, R. A.; Rollett, A. D., Validation of a numerical method based on fast Fourier transforms for heterogeneous thermoelastic materials by comparison with analytical solutions, Comput. Mater. Sci., 87, 209-217 (2014)
[47] Heo, T. W.; Bhattacharyya, S.; Chen, L.-Q., A phase field study of strain energy effects on solute-grain boundary interactions, Acta Mater., 59, 7800-7815 (2011)
[49] Eisenlohr, P.; Diehl, M.; Lebensohn, R.; Roters, F., A spectral method solution to crystal elasto-viscoplasticity at finite strains, Int. J. Plast., 46, 37-53 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.