×

zbMATH — the first resource for mathematics

FEM/wideband FMBEM coupling for structural-acoustic design sensitivity analysis. (English) Zbl 1423.74263
Summary: A coupling algorithm based on the finite element method (FEM) and the wideband fast multipole boundary element method (wideband FMBEM) is proposed for acoustic fluid-structure interaction simulation and structural-acoustic design sensitivity analysis by using the direct differentiation method. The wideband fast multipole method (FMM), which is developed by combining the original FMM and the diagonal form FMM, is used to accelerate the calculation of the matrix-vector products in boundary element analysis. The iterative solver generalized minimal residual method is applied to accelerate the calculation of the solution to the linear system of equations. The FEM/wideband FMBEM algorithm makes it possible to predict the effects of arbitrarily shaped vibrating structures on the sound field numerically. Numerical examples are presented to demonstrate the validity and efficiency of the proposed algorithm.

MSC:
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74J20 Wave scattering in solid mechanics
74P15 Topological methods for optimization problems in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
74S15 Boundary element methods applied to problems in solid mechanics
76Q05 Hydro- and aero-acoustics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Junger, M. C.; Feit, D., Structures and their interaction, (1985), MIT Press
[2] Sommerfeld, A., Partial differential equations in physics, (1949), Academic Press Inc.
[3] Engleder, S.; Steinbach, O., Stabilized boundary element methods for exterior Helmholtz problems, Numer. Math., 110, 145-160, (2008) · Zbl 1156.65098
[4] Demkowicz, L.; Karafiat, A.; Oden, J. T., Solution of elastic scattering problems in linear acoustic using hp boundary element method, Comput. Methods Appl. Mech. Eng., 101, 251-282, (1991) · Zbl 0778.73081
[5] Everstine, G. C.; Henderson, F. M., Coupled finite element/boundary element approach for fluid-structure interaction, J. Acoust. Soc. Am., 87, 1938-1947, (1990)
[6] Fritze, D.; Marburg, S.; Hardtke, H. J., FEM-BEM-coupling and structural-acoustic sensitivity analysis for shell geometries, Comput. Struct., 82, 143-154, (2005)
[7] Marburg, S., Developments in structural-acoustic optimization for passive noise control, Arch. Comput. Meth. Eng., 9, 291-370, (2002) · Zbl 1099.74538
[8] Merz, S.; Kinns, R.; Kessissoglou, N. J., Structural and acoustic responses of a submarine hull due to propeller forces, J. Sound Vib., 325, 266-286, (2009)
[9] Chen, Z. S.; Hofstetter, G.; Mang, H. A., A Galerkin-type BE-FE formulation for elasto-acoustic coupling, Comput. Methods Appl. Mech. Eng., 152, 147-155, (1998) · Zbl 0959.74063
[10] Martinsson, P. G.; Rokhlin, V., A fast direct solver for boundary integral equations in two dimensions, J. Comput. Phys., 205, 1-23, (2004) · Zbl 1078.65112
[11] Martinsson, P. G.; Rokhlin, V., A fast direct solver for scattering problems involving elongated structures, J. Comput. Phys., 221, 288-302, (2007) · Zbl 1111.65109
[12] Martinsson, P. G., A fast direct solver for a class of elliptic partial differential equations, J. Sci. Comput., 38, 316-330, (2009) · Zbl 1203.65066
[13] Bebendorf, M.; Rjasanow, S., Adaptive low-rank approximation of collocation matrices, Computing, 70, 1-24, (2003) · Zbl 1068.41052
[14] Rjasanow, S.; Steinbach, O., The fast solution of boundary integral equations, (2007), Springer Science+Business Media · Zbl 1119.65119
[15] Greengard, L.; Rokhlin, V., A fast algorithm for particle simulations, J. Comput. Phys., 73, 325-348, (1987) · Zbl 0629.65005
[16] Coifman, R.; Rokhlin, V.; Wandzura, S., The fast multipole method for the wave equation: a Pedestrian prescription, IEEE Antennas Propag. Mag., 35, 7-12, (1993)
[17] Song, J.; Lu, C. C.; Chew, W. C., Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects, IEEE Trans. Antennas Propag., 45, 1488-1493, (1997)
[18] Darve, E.; HavĂ©, P., A fast multipole method for Maxwell equations stable at all frequencies, Philos. Trans. R. Soc. London A., 362, 603-628, (2004) · Zbl 1079.78030
[19] Rokhlin, V., Diagonal forms of translation operators for the Helmholtz equation in three dimensions, Appl. Comput. Harmon. Anal., 1, 82-93, (1993) · Zbl 0795.35021
[20] Shen, L.; Liu, Y. J., An adaptive fast multipole boundary element method for three-dimensional acoustic wave problems based on the Burton-Miller formulations, Comput. Mech., 40, 461-472, (2007) · Zbl 1176.76083
[21] Zheng, C. J.; Chen, H. B.; Matsumoto, T.; Takahashi, T., 3D acoustic shape sensitivity analysis using fast multipole boundary element method, Int. J. Comput. Methods, 9, 1240004-1-1240004-11, (2012) · Zbl 1359.74467
[22] Cheng, H.; Crutchfield, W. Y.; Gimbutas, Z.; Greengard, L. F.; Ethridge, J. F.; Huang, J.; Rokhlin, V.; Yarvin, N.; Zhao, J., A wideband fast multipole method for the Helmholtz equation in three dimensions, J. Comput. Phys., 216, 300-325, (2006) · Zbl 1093.65117
[23] Gumerov, N. A.; Duraiswami, R., A broadband fast multipole accelerated boundary element method for the three dimensional Helmholtz equation, J. Acoust. Soc. Am., 125, 191-205, (2009)
[24] Wolf, W. R.; Lele, S. K., Wideband fast multipole boundary element method: application to acoustic scattering from aerodynamic bodies, Int. J. Numer. Methods Fluids, 67, 2108-2129, (2011) · Zbl 1426.76448
[25] Zheng, C. J.; Matsumoto, T.; Takahashi, T.; Chen, H. B., A wideband fast multipole boundary element method for three dimensional acoustic shape sensitivity analysis based on direct differentiation method, Eng. Anal. Boundary Elem., 36, 361-371, (2012) · Zbl 1245.74097
[26] Chen, L. L.; Zheng, C. J.; Chen, H. B., A wideband FMBEM for 2D acoustic design sensitivity analysis based on direct differentiation method, Comput. Mech., 52, 631-648, (2013) · Zbl 1282.74101
[27] Schneider, S., FE/FMBE coupling to model fluid-structure interaction, Int. J. Numer. Methods Eng., 76, 2137-2156, (2008) · Zbl 1195.74196
[28] Fischer, M.; Gaul, L., Fast BEM-FEM mortar coupling for acoustic-structure interaction, Int. J. Numer. Methods Eng., 62, 1677-1690, (2005) · Zbl 1121.74473
[29] Kim, N. H.; Dong, J., Shape sensitivity analysis of sequential structural-acoustic problems using FEM and BEM, J. Sound Vib., 36, 192-208, (2006)
[30] Marburg, S., Developments in structural-acoustic optimization for passive noise control, Arch. Comput. Meth. Eng., 9, 291-370, (2002) · Zbl 1099.74538
[31] Lamancusa, J. S., Numerical optimization techniques for structural-acoustic design of rectangular panels, Comput. Struct., 48, 661-675, (1993) · Zbl 0795.73053
[32] Hambric, S. A., Sensitivity calculations for broad-band acoustic radiated noise design optimization problems, J. Vib. Acoust., 118, 529-532, (1996)
[33] Marburg, S.; Hardtke, H-J., Shape optimization of a vehicle hat-shelf: improving acoustic properties for different load-cases by maximizing first eigenfrequency, Comput. Struct., 79, 1943-1957, (2001)
[34] Choi, K. K.; Shim, I.; Wang, S., Design sensitivity analysis of structure-induced noise and vibration, J. Vib. Acoust., 119, 173-179, (1997)
[35] Wang, S., Design sensitivity analysis of noise, vibration and harshness of vehicle body structure, Mech. Struct. Mach., 27, 317-336, (1999)
[36] Zheng, C. J.; Matsumoto, T.; Takahashi, T.; Chen, H. B., Explicit evaluation of hypersingular boundary integral equations for acoustic sensitivity analysis based on direct differentiation method, Eng. Anal. Boundary Elem., 35, 1225-1235, (2011) · Zbl 1259.76035
[37] Crighton, D. G.; Dowling, A. P.; Ffowcs Williams, J. E.; Heckl, M.; Leppington, F. G., Modern methods in analytical acoustic, (1994), Springer-Verlag London
[38] (Ciskowski, R. D.; Brebbia, C. A., Elements in Acoustics, (1991), Computational Mechanics Publications and Elsevier Applied Science Southampton, Boston) · Zbl 0758.76036
[39] Burton, A. J.; Miller, G. F., The application of integral equation methods to the numerical solution of some exterior boundary-value problems, Proc. R. Soc. London A., 323, 201-210, (1971) · Zbl 0235.65080
[40] Haug, E. J.; Choi, K. K.; Komkov, V., Design sensitivity analysis of structural systems, (1986), Academic Press Inc. · Zbl 0618.73106
[41] Amini, S.; Prot, A., Analysis of the truncation errors in the fast multipole method for scattering problems, J. Comput. Appl. Math., 115, 23-33, (2000) · Zbl 0973.65092
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.