zbMATH — the first resource for mathematics

A stabilized non-ordinary state-based peridynamics for the nonlocal ductile material failure analysis in metal machining process. (English) Zbl 1423.74067
Summary: This paper presents a non-ordinary state-based peridynamic formulation that can be applied to the metal machining analysis. The new formulation is first derived by utilizing the technique of mixed local/nonlocal gradient approximations to enforce the contact and essential boundary conditions associated in modeling the machining process. A stabilized peridynamic force vector state is then introduced to suppress the zero-energy modes which show up as the result of particle integration of the state-based peridynamic formulation. The introduction of the stabilized peridynamic force vector state eliminates the need of an estimation of the force-spring-like bond forces and leads to a consistent computation of peridynamic equations of motion using a general constitutive model. Finally, a continuum damage model is incorporated into the present state-based peridynamic formulation together with a decomposed stabilized approximate deformation gradient based on a neighbor particle reconstruction scheme to model the ductile metal failure and to maintain a well-defined geometric mapping in finite deformation. Three numerical benchmarks are analyzed to demonstrate the effectiveness and regularization of the present method for simulating the metal machining process.

74A45 Theories of fracture and damage
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI
[1] Society of Manufacturing Engineers, www.sme.org.
[2] Degarmo, E. P.; Black, J. T.; Kohser, R. A.; Klamecki, B. E., Material and processes in manufacturing, (2003), John Wiley & Sons, Ltd. Hoboken, NY
[3] Atkins, A. G., Modelling metal cutting using modern ductile fracture mechanics: quantitative explanations for some longstanding problems, Int. J. Mech. Sci., 45, 373-396, (2003)
[4] Borouchaki, H.; Laug, P.; Cherouat, A., Adaptive remeshing in large plastic strain with damage, Int. J. Numer. Methods Eng., 63, 1-36, (2005) · Zbl 1140.74548
[5] Silling, S. A., Reformulation of elasticity theory for discontinuities and long-range forces, J. Mech. Phys. Solids, 48, 175-209, (2000) · Zbl 0970.74030
[6] Pijaudier-Cabot, G.; Bazant, Z. P., Nonlocal damage theory, J. Eng. Mech., 113, 1512-1533, (1987)
[7] Bazant, Z. P.; Jirasek, M., Nonlocal integration formulations of plasticity and damage: survey and progress, J. Eng. Mech., 128, 1119-1149, (2000)
[8] Chen, J. S.; Wu, C. T.; Belytschko, T., Regularization of material instabilities by meshfree approximations with intrinsic length scales, Int. J. Numer. Methods Eng., 47, 1303-1322, (2000) · Zbl 0987.74079
[9] Song, J. H.; Areias, P.; Belytschko, T., A method for dynamic crack and shear band propagation with phantom nodes, Int. J. Numer. Methods Eng., 67, 868-893, (2006) · Zbl 1113.74078
[10] Silling, S. A.; Askari, E., A meshfree method based on the peridynamic model of solid mechanics, Comput. Struct., 83, 1526-1535, (2005)
[11] Madenci, E.; Oterkus, E., Peridynamic theory and its applications, (2014), Springer New York, NY · Zbl 1295.74001
[12] Silling, S. A.; Epton, M.; Weckner, O.; Xu, J.; Askari, E., Peridynamic states and constitutive modelling, J. Elasticity, 88, 151-184, (2007) · Zbl 1120.74003
[13] Bessa, M. A.; Foster, J. T.; Belytschko, T.; Liu, W. K., A meshfree unification: reproducing kernel peridynamics, Comput. Mech., 53, 1251-1264, (2014) · Zbl 1398.74452
[14] Liu, W. K.; Jun, S.; Zhang, Y. F., Reproducing kernel particle methods, Int. J. Numer. Methods Fluids, 20, 1081-1106, (1995) · Zbl 0881.76072
[15] Li, S.; Liu, W. K., Synchronized reproducing kernel interpolant via multiple wavelet expansion, Comput. Mech., 21, 28-47, (1998) · Zbl 0912.76057
[16] Warren, T. L.; Siling, S. A.; Askari, E.; Weckner, O.; Epton, M. A.; Xu, J., A non-ordinary state-based peridynamic method to model solid material deformation and fracture, Int. J. Solids Struct., 46, 1186-1195, (2009) · Zbl 1236.74012
[17] Foster, J. T.; Silling, S. A.; Chen, W. W., Viscoelasticity using peridynamics, Int. J. Numer. Methods Eng., 81, 1242-1258, (2010) · Zbl 1183.74035
[18] Tupek, M. R.; Rimoli, J. J.; Radovitzky, R., An approach for incorporating classical continuum damage models in state-based peridynamics, Comput. Methods Appl. Mech. Engrg., 263, 20-26, (2013) · Zbl 1286.74022
[19] Chen, J. S.; Wang, H. P., New boundary condition treatments in meshfree computation of contact problems, Comput. Methods Appl. Mech. Engrg., 187, 441-468, (2000) · Zbl 0980.74077
[20] Li, S.; Liu, W. K., Meshfree particle method, (2004), Springer Berlin
[21] Wang, H. P.; Wu, C. T.; Guo, Y.; Botkin, M. E., A coupled meshfree/finite element method for automotive crashworthiness simulations, Int. J. Impact Eng., 36, 1210-1222, (2009)
[22] Park, M. L.; Lehoucq, R. B.; Plimpton, S.; Silling, S. A., Implementing peridynamics within a molecular dynamics code, Comput. Phys. Comm., 179, 777-783, (2008) · Zbl 1197.82014
[23] Kilic, B.; Madenci, E., An adaptive dynamic relaxation method for quasi-static simulations using the peridynamic theory, Theor. Appl. Fract. Mech., 53, 194-204, (2010)
[24] Oterkus, E.; Madenci, E.; Weckner, O.; Bogert, S. A.; Tessler, A., Combined finite element and peridynamic analyses for predicting failure in a stiffened composite curved panel with a central slot, Compos. Struct., 94, 839-850, (2012)
[25] Liu, W.; Hong, J. W., A coupling approach of discretized peridynamics with finite element method, Comput. Methods Appl. Mech. Engrg., 245-246, 163-175, (2012) · Zbl 1354.74284
[26] Wu, C. T.; Ren, B., Localized particle boundary condition enforcements for the state-based peridynamics, Interact. Multi-scale Mech., 7, 525-542, (2014)
[27] Wu, C. T., Kinematic constrains in the state-based peridynamics with mixed local/nonlocal gradient approximations, Comput. Mech., 54, 1255-1267, (2014) · Zbl 1311.74019
[28] Breitenfeld, M. S.; Geubelle, P. H.; Weckner, O.; Silling, S. A., Non-ordinary state-based peridynamic analysis of stationary crack problems, Comput. Methods Appl. Mech. Engrg., 272, 233-250, (2014) · Zbl 1296.74099
[29] D.J. Littlewood, A nonlocal approach to modeling crack nucleation in AA 7075-T651, in: Proceedings of ASME 2011 International Mechanical Engineering Congress & Exposition, 2011.
[30] Bobaru, F.; Hu, W., The meaning, selection, and use of the peridynamic horizon and its relation to crack branching in brittle materials, Int. J. Fract., 176, 215-222, (2012)
[31] Seleson, P.; Parks, M. L.; Gunzburger, M.; Lehoucq, R. B., Peridynamics as an upscaling of molecular dynamics, Multiscale Model. Simul., 8, 204-227, (2009) · Zbl 1375.82073
[32] Seleson, P.; Parks, M. L.; Gunzburger, M., Peridynamic state-based models and the embedded-atom model, Commun. Comput. Phys., 15, 179-205, (2014) · Zbl 1373.82029
[33] Seleson, P.; Parks, M. L., On the role of the influence function in the peridynamic theory, Int. J. Multiscale Comput. Eng., 9, 689-706, (2011)
[34] Chen, J. S.; Pan, C.; Wu, C. T.; Liu, W. K., Reproducing kernel particle methods for large deformation analysis of nonlinear structures, Comput. Methods. Appl. Mech. Eng., 139, 195-227, (1996) · Zbl 0918.73330
[35] Wu, C. T.; Park, C. K.; Chen, J. S., A generalized approximation for the meshfree analysis of solids, Int. J. Numer. Methods Eng., 85, 693-722, (2011) · Zbl 1217.74150
[36] Wu, C. T.; Hu, W., Meshfree-enriched simplex elements with strain smoothing for the finite element analysis of compressible and nearly incompressible solids, Comput. Methods. Appl. Mech. Eng., 200, 2991-3010, (2011) · Zbl 1230.74201
[37] Wu, C. T.; Hu, W.; Chen, J. S., Meshfree-enriched finite element methods for the compressible and near-incompressible elasticity, Int. J. Numer. Methods. Eng., 90, 882-914, (2012) · Zbl 1242.74174
[38] Belytschko, T.; Lu, Y. Y.; Gu, L., Element-free Galerkin methods, Int. J. Numer. Methods Eng., 37, 229-256, (1994) · Zbl 0796.73077
[39] Simo, J. C.; Ju, J. W., Strain- and stress-based continuum damage models —I. formulation, II. computational aspects, Int. J. Solids Struct., 23, 821-869, (1987) · Zbl 0634.73107
[40] Peerlings, R. H.J.; Geers, M. G.D.; de Borst, R.; Brekelmans, W. A.M., A critical comparison of nonlocal and gradient-enhanced softening continua, Int. J. Solids Struct., 38, 7723-7746, (2001) · Zbl 1032.74008
[41] Lemaitre, J., How to use damage mechanics, Nucl. Engrg. Des., 80, 233-245, (1984)
[42] Guan, P. C.; Chi, S. W.; Chen, J. S.; Slawson, T. R.; Roth, M. J., Semi-Lagrangian reproducing kernel particle method for fragment-impact problems, Int. J. Impact Eng., 38, 1033-1047, (2011)
[43] Belytschko, T.; Liu, W. K.; Moran, B.; Elkhodary, K., Nonlinear finite elements for continua and structures, (2014), Wiley United Kingdom
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.