×

zbMATH — the first resource for mathematics

A structured population model of clonal selection in acute leukemias with multiple maturation stages. (English) Zbl 1423.35383
Summary: Recent progress in genetic techniques has shed light on the complex co-evolution of malignant cell clones in leukemias. However, several aspects of clonal selection still remain unclear. In this paper, we present a multi-compartmental continuously structured population model of selection dynamics in acute leukemias, which consists of a system of coupled integro-differential equations. Our model can be analysed in a more efficient way than classical models formulated in terms of ordinary differential equations. Exploiting the analytical tractability of this model, we investigate how clonal selection is shaped by the self-renewal fraction and the proliferation rate of leukemic cells at different maturation stages. We integrate analytical results with numerical solutions of a calibrated version of the model based on real patient data. In summary, our mathematical results formalise the biological notion that clonal selection is driven by the self-renewal fraction of leukemic stem cells and the clones that possess the highest value of this parameter are ultimately selected. Moreover, we demonstrate that the self-renewal fraction and the proliferation rate of non-stem cells do not have a substantial impact on clonal selection. Taken together, our results indicate that interclonal variability in the self-renewal fraction of leukemic stem cells provides the necessary substrate for clonal selection to act upon.

MSC:
35R09 Integro-partial differential equations
35B40 Asymptotic behavior of solutions to PDEs
35Q92 PDEs in connection with biology, chemistry and other natural sciences
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Adams, P.; Jasper, H.; Rudolph, K., Aging-induced stem cell mutations as drivers for disease and cancer, Cell Stem Cell, 16, 601-612, (2015)
[2] Anderson, K.; Lutz, C.; Delft, F.; Bateman, C.; Guo, Y.; Colman, S.; Kempski, H.; Moorman, A.; Titley, I.; Swansbury, J.; Kearney, L.; Enver, T.; Greaves, M., Genetic variegation of clonal architecture and propagating cells in leukaemia, Nature, 469, 356-361, (2011)
[3] Bacher, U.; Haferlach, C.; Kern, W.; Haferlach, T.; Schnittger, S., Prognostic relevance of FLT3-TKD mutations in AML: the combination matters-an analysis of 3082 patients, Blood, 111, 2527-2537, (2008)
[4] Barles, G.; Mirrahimi, S.; Perthame, B., Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result, Methods Appl Anal, 16, 321-340, (2009) · Zbl 1204.35027
[5] Belderbos, M.; Koster, T.; Ausema, B.; Jacobs, S.; Sowdagar, S.; Zwart, E.; Bont, E.; Haan, G.; Bystrykh, L., Clonal selection and asymmetric distribution of human leukemia in murine xenografts revealed by cellular barcoding, Blood, 129, 3210-3220, (2017)
[6] Bonnet, D.; Dick, J., Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell, Nat Med, 3, 730-737, (1997)
[7] Busse, J.; Gwiazda, P.; Marciniak-Czochra, A., Mass concentration in a nonlocal model of clonal selection, J Math Biol, 73, 1001-1033, (2016) · Zbl 1360.92035
[8] Calsina, À.; Cuadrado, S.; Desvillettes, L.; Raoul, G., Asymptotics of steady states of a selection-mutation equation for small mutation rate, Proc R Soc Edinb Sect A Math, 143, 1123-1146, (2013) · Zbl 1293.35341
[9] Cartwright, GE; Athens, JW; Wintrobe, MM, The kinetics of granulopoiesis in normal man, Blood, 24, 780-803, (1964)
[10] Chisholm, RH; Lorenzi, T.; Lorz, A., Effects of an advection term in nonlocal Lotka-Volterra equations, Commun Math Sci, 14, 1181-1188, (2016) · Zbl 1344.35155
[11] Choi, S.; Henderson, M.; Kwan, E.; Beesley, A.; Sutton, R.; Bahar, A.; Giles, J.; Venn, N.; Pozza, L.; Baker, D.; Marshall, G.; Kees, U.; Haber, M.; Norris, M., Relapse in children with acute lymphoblastic leukemia involving selection of a preexisting drug-resistant subclone, Blood, 110, 632-639, (2007)
[12] Cronkite, EP, Kinetics of granulopoiesis, Clin Haematol, 8, 351-370, (1979)
[13] Delitala, M.; Lorenzi, T., Asymptotic dynamics in continuous structured populations with mutations, competition and mutualism, J Math Anal Appl, 389, 439-451, (2012) · Zbl 1232.37044
[14] Desvillettes, L.; Jabin, PE; Mischler, S.; Raoul, G., On selection dynamics for continuous structured populations, Commun Math Sci, 6, 729-747, (2008) · Zbl 1176.45009
[15] Diekmann, O.; Jabin, P-E; Mischler, S.; Perthame, B., The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach, Theor Popul Biol, 67, 257-271, (2005) · Zbl 1072.92035
[16] Ding, L.; Ley, T.; Larson, D.; Miller, C.; Koboldt, D.; Welch, J.; Ritchey, J.; Young, M.; Lamprecht, T.; McLellan, M.; McMichael, J.; Wallis, J.; Lu, C.; Shen, D.; Harris, C.; Dooling, D.; Fulton, R.; Fulton, L.; Chen, K.; Schmidt, H.; Kalicki-Veizer, J.; Magrini, V.; Cook, L.; McGrath, S.; Vickery, T.; Wendl, M.; Heath, S.; Watson, M.; Link, D.; Tomasson, M.; Shannon, W.; Payton, J.; Kulkarni, S.; Westervelt, P.; Walter, M.; Graubert, T.; Mardis, E.; Wilson, R.; DiPersio, J., Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing, Nature, 481, 506-510, (2012)
[17] Doulatov, S.; Notta, F.; Rice, K.; Howell, L.; Zelent, A.; Licht, J.; Dick, J., PLZF is a regulator of homeostatic and cytokine-induced myeloid development, Genes Dev, 23, 2076-2087, (2009)
[18] Doumic-Jauffret, M.; Marciniak-Czochra, A.; Perthame, B.; Zubelli, J., A structured population model of cell differentiation, SIAM J Appl Math, 71, 1918-1940, (2011) · Zbl 1235.35030
[19] Eppert, K.; Takenaka, K.; Lechman, E.; Waldron, L.; Nilsson, B.; Galen, P.; Metzeler, K.; Poeppl, A.; Ling, V.; Beyene, J.; Canty, A.; Danska, J.; Bohlander, S.; Buske, C.; Minden, M.; Golub, T.; Jurisica, I.; Ebert, B.; Dick, J., Stem cell gene expression programs influence clinical outcome in human leukemia, Nat Med, 17, 1086-1093, (2011)
[20] Gale, R.; Green, C.; Allen, C.; Mead, A.; Burnett, A.; Hills, R.; Linch DC, P., Medical Research Council Adult Leukaemia Working. The impact of FLT3 internal tandem duplication mutant level, number, size, and interaction with NPM1 mutations in a large cohort of young adult patients with acute myeloid leukemia, Blood, 111, 2776-2784, (2008)
[21] Getto, P.; Marciniak-Czochra, A.; Nakata, Y.; Vivanco, M., Global dynamics of two-compartment models for cell production systems with regulatory mechanisms, Math Biosci, 245, 258-268, (2013) · Zbl 1308.92039
[22] Ghosh, J.; Kobayashi, M.; Ramdas, B.; Chatterjee, A.; Ma, P.; Mali, R.; Carlesso, N.; Liu, Y.; Plas, D.; Chan, R.; Kapur, R., S6k1 regulates hematopoietic stem cell self-renewal and leukemia maintenance, J Clin Investig, 126, 2621-2625, (2016)
[23] Gwiazda, P.; Jamroz, G.; Marciniak-Czochra, A., Models of discrete and continuous cell differentiation in the framework of transport equation, SIAM J Math Anal, 44, 1103-1133, (2012) · Zbl 1316.92022
[24] Heuser, M.; Sly, L.; Argiropoulos, B.; Kuchenbauer, F.; Lai, C.; Weng, A.; Leung, M.; Lin, G.; Brookes, C.; Fung, S.; Valk, P.; Delwel, R.; Loewenberg, B.; Krystal, G.; Humphries, R., Modeling the functional heterogeneity of leukemia stem cells: role of STAT5 in leukemia stem cell self-renewal, Blood, 114, 3983-3993, (2009)
[25] Hirsch, P.; Zhang, Y.; Tang, R.; Joulin, V.; Boutroux, H.; Pronier, E.; Moatti, H.; Flandrin, P.; Marzac, C.; Bories, D.; Fava, F.; Mokrani, H.; Betems, A.; Lorre, F.; Favier, R.; Feger, F.; Mohty, M.; Douay, L.; Legrand, O.; Bilhou-Nabera, C.; Louache, F.; Delhommeau, F., Genetic hierarchy and temporal variegation in the clonal history of acute myeloid leukaemia, Nat Commun, 7, 12475, (2016)
[26] Hope, K.; Jin, L.; Dick, J., Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity, Nat Immunol, 5, 738-743, (2004)
[27] Jan, M.; Majeti, R., Clonal evolution of acute leukemia genomes, Oncogene, 32, 135-140, (2013)
[28] Jung, N.; Dai, B.; Gentles, A.; Majeti, R.; Feinberg, A., An LSC epigenetic signature is largely mutation independent and implicates the HOXA cluster in AML pathogenesis, Nat Commun, 6, 8489, (2015)
[29] Kikushige, Y.; Miyamoto, T.; Yuda, J.; Jabbarzadeh-Tabrizi, S.; Shima, T.; Takayanagi, S.; Niiro, H.; Yurino, A.; Miyawaki, K.; Takenaka, K.; Iwasaki, H.; Akashi, K., A TIM-3/Gal-9 autocrine stimulatory loop drives self-renewal of human myeloid leukemia stem cells and leukemic progression, Cell Stem Cell, 17, 341-52, (2015)
[30] Knauer F (2012) Dynamical behaviour of a single feedback-controlled haematopoietic model. MS. thesis, Heidelberg University
[31] Knauer F, Stiehl T, Marciniak-Czochra A (2019) Oscillations in a white blood cell production model with multiple differentiation stages. arxiv:1812.02017. Submitted
[32] Kondo, S.; Okamura, S.; Asano, Y.; Harada, M.; Niho, Y., Human granulocyte colony-stimulating factor receptors in acute myelogenous leukemia, Eur J Haematol, 46, 223-230, (1991)
[33] Lagunas-Rangel, F.; Chávez-Valencia, V., FLT3-ITD and its current role in acute myeloid leukaemia, Med Oncol, 34, 114, (2017)
[34] Layton, J.; Hockman, H.; Sheridan, W.; Morstyn, G., Evidence for a novel in vivo control mechanism of granulopoiesis: mature cell-related control of a regulatory growth factor, Blood, 74, 1303-1307, (1989)
[35] Ley, T.; Mardis, E.; Ding, L.; Fulton, B.; McLellan, M.; Chen, K.; Dooling, D.; Dunford-Shore, B.; McGrath, S.; Hickenbotham, M.; Cook, L.; Abbott, R.; Larson, D.; Koboldt, D.; Pohl, C.; Smith, S.; Hawkins, A.; Abbott, S.; Locke, D.; Hillier, L.; Miner, T.; Fulton, L.; Magrini, V.; Wylie, T.; Glasscock, J.; Conyers, J.; Sander, N.; Shi, X.; Osborne, J.; Minx, P.; Gordon, D.; Chinwalla, A.; Zhao, Y.; Ries, R.; Payton, J.; Westervelt, P.; Tomasson, M.; Watson, M.; Baty, J.; Ivanovich, J.; Heath, S.; Shannon, W.; Nagarajan, R.; Walter, M.; Link, D.; Graubert, T.; DiPersio, J.; Wilson, R., DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome, Nature, 456, 66-72, (2008)
[36] Lorenzi, T.; Lorz, A.; Restori, G., Asymptotic dynamics in populations structured by sensitivity to global warming and habitat shrinking, Acta Appl Math, 131, 49-67, (2014) · Zbl 1305.35149
[37] Lorz, A.; Mirrahimi, S.; Perthame, B., Dirac mass dynamics in multidimensional nonlocal parabolic equations, Commun Partial Differ Equ, 36, 1071-1098, (2011) · Zbl 1229.35113
[38] Lutz, C.; Hoang, V.; Ho, A., Identifying leukemia stem cells-is it feasible and does it matter?, Cancer Lett, 338, 10-14, (2013)
[39] Lutz, C.; Woll, P.; Hall, G.; Castor, A.; Dreau, H.; Cazzaniga, G.; Zuna, J.; Jensen, C.; Clark, S.; Biondi, A.; Mitchell, C.; Ferry, H.; Schuh, A.; Buckle, V.; Jacobsen, S.; Enver, T., Quiescent leukaemic cells account for minimal residual disease in childhood lymphoblastic leukaemia, Leukemia, 27, 1204-1207, (2013)
[40] Malinowska, I.; Stelmaszczyk-Emmel, A.; Wasik, M.; Rokicka-Milewska, R., Apoptosis and pH of blasts in acute childhood leukemia, Med Sci Monit, 8, cr441-cr447, (2002)
[41] Marciniak-Czochra, A.; Stiehl, T.; Jäger, W.; Ho, AD; Wagner, W., Modeling of asymmetric cell division in hematopoietic stem cells–regulation of self-renewal is essential for efficient repopulation, Stem Cells Dev, 18, 377-385, (2009)
[42] Marciniak-Czochra, A.; Mikelic, A.; Stiehl, T., Renormalization group second order approximation for singularly perturbed nonlinear ordinary differential equations, Math Methods Appl Sci, 41, 5691-5710, (2018) · Zbl 1404.34071
[43] Metzeler, K.; Maharry, K.; Kohlschmidt, J.; Volinia, S.; Mrozek, K.; Becker, H.; Nicolet, D.; Whitman, S.; Mendler, J.; Schwind, S.; Eisfeld, A.; Wu, Y.; Powell, B.; Carter, T.; Wetzler, M.; Kolitz, J.; Baer, M.; Carroll, A.; Stone, R.; Caligiuri, M.; Marcucci, G.; Bloomfield, C., A stem cell-like gene expression signature associates with inferior outcomes and a distinct microRNA expression profile in adults with primary cytogenetically normal acute myeloid leukemia, Leukemia, 27, 2023-2031, (2013)
[44] Morgan, D.; Desai, A.; Edgar, B.; Glotzer, M.; Heald, R.; Karsenti, E.; Nasmyth, K.; Pines, J.; Sherr, C.; Alberts, B. (ed.); Johnson, A. (ed.); Lewis, J. (ed.); Raff, M. (ed.); Roberts, K. (ed.); Walter, R. (ed.), The cell cycle, (2007), New York
[45] Nakata, Y.; Getto, P.; Marciniak-Czochra, A.; Alarcon, T., Stability analysis of multi-compartment models for cell production systems, J Biol Dyn, 6, 2-18, (2012)
[46] Naoe, T.; Kiyoi, H., Gene mutations of acute myeloid leukemia in the genome era, Int J Hematol, 97, 165-174, (2013)
[47] Noetzli, J.; Gavillet, M.; Masouridi-Levrat, S.; Duchosal, M.; Spertini, O., T315I clone selection in a Ph+ all patient under low-dose ponatinib maintenance, Clin Case Rep, 5, 1320-1322, (2017)
[48] Perthame, B.; Barles, G., Dirac concentrations in lotka-volterra parabolic pdes, Indiana Univ Math J, 57, 3275-3301, (2008) · Zbl 1172.35005
[49] Pui, C.; Yang, J.; Hunger, S.; Pieters, R.; Schrappe, M.; Biondi, A.; Vora, A.; Baruchel, A.; Silverman, L.; Schmiegelow, K.; Escherich, G.; Horibe, K.; Benoit, Y.; Izraeli, S.; Yeoh, A.; Liang, D.; Downing, J.; Evans, W.; Relling, M.; Mullighan, C., Childhood acute lymphoblastic leukemia: progress through collaboration, J Clin Oncol, 33, 2938-2948, (2015)
[50] Raoul, G., Long time evolution of populations under selection and vanishing mutations, Acta Appl Math, 114, 1-14, (2011) · Zbl 1213.35112
[51] Reya, T.; Morrison, S.; Clarke, M.; Weissman, I., Stem cells, cancer, and cancer stem cells, Nature, 414, 105-111, (2001)
[52] Roelofs, H.; Pauw, E.; Zwinderman, A.; Opdam, S.; Willemze, R.; Tanke, H.; Fibbe, W., Homeostasis of telomere length rather than telomere shortening after allogeneic peripheral blood stem cell transplantation, Blood, 101, 358-62, (2003)
[53] Savitskiy, V.; Shman, T.; Potapnev, M., Comparative measurement of spontaneous apoptosis in pediatric acute leukemia by different techniques, Cytom Part B Clin Cytom, 56, 16-22, (2003)
[54] Shepherd, BE; Guttorp, P.; Lansdorp, PM; Abkowitz, JL, Estimating human hematopoietic stem cell kinetics using granulocyte telomere lengths, Exp Hematol, 32, 1040-1050, (2004)
[55] Shinjo, K.; Takeshita, A.; Ohnishi, K.; Ohno, R., Granulocyte colony-stimulating factor receptor at various stages of normal and leukemic hematopoietic cells, Leukemia Lymphoma, 25, 37-46, (1997)
[56] Stiehl, T.; Marciniak-Czochra, A., Characterization of stem cells using mathematical models of multistage cell lineages, Math Comput Model, 53, 1505-1517, (2011) · Zbl 1219.34068
[57] Stiehl, T.; Marciniak-Czochra, A., Mathematical modelling of leukemogenesis and cancer stem cell dynamics, Math Model Nat Phenom, 7, 166-202, (2012) · Zbl 1241.92045
[58] Stiehl, T.; Marciniak-Czochra, A., Stem cell self-renewal in regeneration and cancer: insights from mathematical modeling, Curr Opin Syst Biol, 5, 112-120, (2017)
[59] Stiehl, T.; Marciniak-Czochra, A., How to characterize stem cells? contributions from mathematical modeling, Curr Stem Cell Rep, (2019) · Zbl 1241.92045
[60] Stiehl, T.; Baran, N.; Ho, A.; Marciniak-Czochra, A., Clonal selection and therapy resistance in acute leukaemias: mathematical modelling explains different proliferation patterns at diagnosis and relapse, J R Soc Interface, 11, 20140079, (2014)
[61] Stiehl, T.; Ho, A.; Marciniak-Czochra, A., Assessing hematopoietic (stem-) cell behavior during regenerative pressure, Adv Exp Med Biol, 844, 347-367, (2014)
[62] Stiehl, T.; Ho, A.; Marciniak-Czochra, A., The impact of CD34+ cell dose on engraftment after SCTs: personalized estimates based on mathematical modeling, Bone Marrow Transpl, 49, 30-37, (2014)
[63] Stiehl, T.; Baran, N.; Ho, A.; Marciniak-Czochra, A., Cell division patterns in acute myeloid leukemia stem-like cells determine clinical course: a model to predict patient survival, Cancer Res, 75, 940-949, (2015)
[64] Stiehl, T.; Lutz, C.; Marciniak-Czochra, A., Emergence of heterogeneity in acute leukemias, Biol Direct, 11, 51, (2016)
[65] Stiehl, T.; Ho, A.; Marciniak-Czochra, A., Cytokine response of leukemic cells has impact on patient prognosis: insights from mathematical modeling, Sci Rep, 8, 2809, (2018)
[66] Delft, F.; Horsley, S.; Colman, S.; Anderson, K.; Bateman, C.; Kempski, H.; Zuna, J.; Eckert, C.; Saha, V.; Kearney, L.; Ford, A.; Greaves, M., Clonal origins of relapse in ETV6-RUNX1 acute lymphoblastic leukemia, Blood, 117, 6247-6254, (2011)
[67] Wang, W.; Stiehl, T.; Raffel, S.; Hoang, V.; Hoffmann, I.; Poisa-Beiro, L.; Saeed, B.; Blume, R.; Manta, L.; Eckstein, V.; Bochtler, T.; Wuchter, P.; Essers, M.; Jauch, A.; Trumpp, A.; Marciniak-Czochra, A.; Ho, A.; Lutz, C., Reduced hematopoietic stem cell frequency predicts outcome in acute myeloid leukemia, Haematologica, 102, 1567-1577, (2017)
[68] Wang, Y.; Krivtsov, A.; Sinha, A.; North, T.; Goessling, W.; Feng, Z.; Zon, L.; Armstrong, S., The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML, Science, 327, 1650-1653, (2010)
[69] Werner, B.; Dingli, D.; Traulsen, A., A deterministic model for the occurrence and dynamics of multiple mutations in hierarchically organized tissues, J R Soc Interface, 10, 20130349, (2013)
[70] Wu, B.; Jug, R.; Luedke, C.; Su, P.; Rehder, C.; McCall, C.; Lagoo, A.; Wang, E., Lineage switch between b-lymphoblastic leukemia and acute myeloid leukemia intermediated by ’occult’ myelodysplastic neoplasm: two cases of adult patients with evidence of genomic instability and clonal selection by chemotherapy, Am J Clin Pathol, 148, 136-147, (2017)
[71] Yamamoto, R.; Morita, Y.; Ooehara, J.; Hamanaka, S.; Onodera, M.; Rudolph, K.; Ema, H.; Nakauchi, H., Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells, Cell, 154, 1112-1126, (2013)
[72] Yassin, E.; Abdul-Nabi, A.; Takeda, A.; Yaseen, N., Effects of the NUP98-DDX10 oncogene on primary human CD34+ cells: role of a conserved helicase motif, Leukemia, 24, 1001-1011, (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.